login
A172030
Numerators of the sequence with g.f. x*B(x)/(1-2*x), where B(x) denotes the "original" Bernoulli numbers.
4
0, 1, 5, 31, 31, 619, 619, 5779, 5779, 69341, 69341, 3051179, 3051179, 52884569, 52884569, 634649863, 634649863, 43152570067, 43152570067, 1093376176159, 1093376176159, 2623076354557, 2623076354557, 241599308325943, 241599308325943, 1604223576455477
OFFSET
0,3
COMMENTS
The generating function of the "original" Bernoulli numbers is
B(x) = sum_n A164555(n)*x^n/A027642(n). The generating function C(x) = x*B(x)/(1-2*x) defines a sequence
c(n) = 0, 1, 5/2, 31/6, 31/3, 619/30,... obeying c(n+1)-2*c(n) = A164555(n)/A027642(n).
a(n) is the numerator of c(n).
MATHEMATICA
c[n_] := 2*c[n-1] + BernoulliB[n-1]; c[0] = 0; c[1] = 1; c[2] = 5/2; a[n_] := c[n] // Numerator; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 15 2013 *)
CROSSREFS
Cf. A172031.
Sequence in context: A256153 A238196 A352347 * A042837 A354881 A162173
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, Jan 23 2010
EXTENSIONS
Edited and extended by R. J. Mathar, Mar 14 2010
STATUS
approved