login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A172030
Numerators of the sequence with g.f. x*B(x)/(1-2*x), where B(x) denotes the "original" Bernoulli numbers.
4
0, 1, 5, 31, 31, 619, 619, 5779, 5779, 69341, 69341, 3051179, 3051179, 52884569, 52884569, 634649863, 634649863, 43152570067, 43152570067, 1093376176159, 1093376176159, 2623076354557, 2623076354557, 241599308325943, 241599308325943, 1604223576455477
OFFSET
0,3
COMMENTS
The generating function of the "original" Bernoulli numbers is
B(x) = sum_n A164555(n)*x^n/A027642(n). The generating function C(x) = x*B(x)/(1-2*x) defines a sequence
c(n) = 0, 1, 5/2, 31/6, 31/3, 619/30,... obeying c(n+1)-2*c(n) = A164555(n)/A027642(n).
a(n) is the numerator of c(n).
MATHEMATICA
c[n_] := 2*c[n-1] + BernoulliB[n-1]; c[0] = 0; c[1] = 1; c[2] = 5/2; a[n_] := c[n] // Numerator; Table[a[n], {n, 0, 25}] (* Jean-François Alcover, Apr 15 2013 *)
CROSSREFS
Cf. A172031.
Sequence in context: A256153 A238196 A352347 * A042837 A354881 A162173
KEYWORD
nonn,frac
AUTHOR
Paul Curtz, Jan 23 2010
EXTENSIONS
Edited and extended by R. J. Mathar, Mar 14 2010
STATUS
approved