OFFSET
0,2
COMMENTS
For the definition of the ASPEC array coefficients see the formulas; see also A029635 (Lucas triangle), A097207 and A191662 (k-dimensional square pyramidal numbers).
The coefficients of the T(n,m) array are defined in A190339. We define the coefficients of the SBD array with the aid of the T(n,n+1), see the formulas and the examples.
Multiplication of the coefficients in the rows of the ASPEC array with the coefficients in the columns of the SBD array leads to the coefficients of the BSPEC triangle, see the formulas. The BSPEC triangle can be looked upon as a spectrum for the Bernoulli numbers.
For the numerators of the BSPEC triangle coefficients see A192456.
FORMULA
ASPEC(n, 0) = 2 and ASPEC(n, m) = (2*n+m)*binomial(n+m-1, m-1)/m, n >= 0, m >= 1.
ASPEC(n, m) = ASPEC(n-1, m) + ASPEC(n, m-1), n >= 1, m >= 1, with ASPEC(n, 0) = 2, n >= 0, and ASPEC(0,m) = 1, m >= 1.
SBD(n, m) = T(m, m+1), n >= 2*m; see A190339 for the definition of the T(n, m).
BSPEC(n, m) = SBD(n, m)*ASPEC(m, n-2*m)
EXAMPLE
The first few rows of the array ASPEC array:
2, 1, 1, 1, 1, 1, 1,
2, 3, 4, 5, 6, 7, 8,
2, 5, 9, 14, 20, 27, 35,
2, 7, 16, 30, 50, 77, 112,
2, 9, 25, 55, 105, 182, 294,
The first few T(n,n+1) = T(n,n)/2 coefficients:
1/2, -1/6, 1/15, -4/105, 4/105, -16/231, 3056/15015, ...
The first few rows of the SBD array:
1/2, 0, 0, 0
1/2, 0, 0, 0
1/2, -1/6, 0, 0
1/2, -1/6, 0, 0
1/2, -1/6, 1/15, 0
1/2, -1/6, 1/15, 0
1/2, -1/6, 1/15, -4/105
1/2, -1/6, 1/15, -4/105
The first few rows of the BSPEC triangle:
B(0) = 1 = 1/1
B(1) = 1/2 = 1/2
B(2) = 1/6 = 1/2 - 1/3
B(3) = 0 = 1/2 - 1/2
B(4) = -1/30 = 1/2 - 2/3 + 2/15
B(5) = 0 = 1/2 - 5/6 + 1/3
B(6) = 1/42 = 1/2 - 1/1 + 3/5 - 8/105
B(7) = 0 = 1/2 - 7/6 + 14/15 - 4/15
MAPLE
nmax:=13: mmax:=nmax:
A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end:
A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end:
for n from 1 to nmax do for m from 0 to 2*mmax do T(n, m):=T(n-1, m+1)-T(n-1, m) od: od:
seq(T(n, n+1), n=0..nmax):
for n from 0 to nmax do ASPEC(n, 0):=2: for m from 1 to mmax do ASPEC(n, m):= (2*n+m)*binomial(n+m-1, m-1)/m od: od:
for n from 0 to nmax do seq(ASPEC(n, m), m=0..mmax) od:
for n from 0 to nmax do for m from 0 to 2*mmax do SBD(n, m):=0 od: od:
for m from 0 to mmax do for n from 2*m to nmax do SBD(n, m):= T(m, m+1) od: od:
for n from 0 to nmax do seq(SBD(n, m), m= 0..mmax/2) od:
for n from 0 to nmax do BSPEC(n, 2) := SBD(n, 2)*ASPEC(2, n-4) od:
for m from 0 to mmax do for n from 0 to nmax do BSPEC(n, m) := SBD(n, m)*ASPEC(m, n-2*m) od: od:
for n from 0 to nmax do seq(BSPEC(n, m), m=0..mmax/2) od:
seq(add(BSPEC(n, k), k=0..floor(n/2)) , n=0..nmax):
Tx:=0:
for n from 0 to nmax do for m from 0 to floor(n/2) do a(Tx):= denom(BSPEC(n, m)): Tx:=Tx+1: od: od:
seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Jul 02 2011
MATHEMATICA
(* a=ASPEC, b=BSPEC *) nmax = 13; a[n_, 0] = 2; a[n_, m_] := (2n+m)*Binomial[n+m-1, m-1]/m; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, nmax}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; dd = Diagonal[diff]; sbd[n_, m_] := If[n >= 2m, -dd[[m+1]], 0]; b[n_, m_] := sbd[n, m]*a[m, n-2m]; Table[b[n, m], {n, 0, nmax}, {m, 0, Floor[n/2]}] // Flatten // Denominator (* Jean-François Alcover_, Aug 09 2012 *)
CROSSREFS
KEYWORD
nonn,frac,tabf
AUTHOR
Paul Curtz, May 30 2011
EXTENSIONS
Edited, Maple program and crossrefs added by Johannes W. Meijer, Jul 02 2011
STATUS
approved