login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A060244
Triangle a(n,k) of bipartite partitions of n objects into parts >1, k of which are black.
8
1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 2, 2, 3, 2, 2, 2, 3, 4, 4, 3, 2, 4, 5, 8, 8, 8, 5, 4, 4, 7, 11, 13, 13, 11, 7, 4, 7, 11, 19, 22, 26, 22, 19, 11, 7, 8, 15, 26, 35, 40, 40, 35, 26, 15, 8, 12, 22, 41, 54, 69, 70, 69, 54, 41, 22, 12, 14, 30, 56, 81, 104, 116, 116, 104, 81, 56, 30, 14, 21, 42
OFFSET
0,11
REFERENCES
P. A. MacMahon, Memoir on symmetric functions of the roots of systems of equations, Phil. Trans. Royal Soc. London, 181 (1890), 481-536; Coll. Papers II, 32-87.
FORMULA
G.f.: Product_{ i=2..infinity, j=0..i} 1/(1-x^(i-j)*y^j).
EXAMPLE
Series ends ... + 2*x^5 + 3*x^4*y + 4*x^3*y^2 + 4*x^2*y^3 + 3*x*y^4 + 2*y^5 + 2*x^4 + 2*x^3*y + 3*x^2*y^2 + 2*x*y^3 + 2*y^4 + x^3 + x^2*y + x*y^2 + y^3 + x^2 + x*y + y^2 + 1.
1;
0, 0;
1, 1, 1;
1, 1, 1, 1;
2, 2, 3, 2, 2;
...
MAPLE
read transforms; t1 := mul( mul( 1/(1-x^(i-j)*y^j), j=0..i), i=2..11): SERIES2(t1, x, y, 7);
MATHEMATICA
max = 12; gf = Product[1/(1 - x^(i - j)*y^j), {i, 2, max}, {j, 0, i}]; se = Series[gf, {x, 0, max}, {y, 0, max}] // Normal; t[n_, k_] := SeriesCoefficient[se, {x, 0, n}, {y, 0, k}]; Flatten[ Table[ t[n - k, k], {n, 0, max}, {k, 0, n}]] (* Jean-François Alcover, after Maple *)
CROSSREFS
Row sums: A060285.
Sequence in context: A085962 A160821 A300225 * A072814 A196229 A191302
KEYWORD
nonn,nice,tabl,easy
AUTHOR
N. J. A. Sloane, Mar 22 2001
EXTENSIONS
More terms from Vladeta Jovovic, Mar 23 2001
Edited by Christian G. Bower, Jan 08 2004
STATUS
approved