login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A291596
Column 6 of A060244.
2
0, 0, 0, 0, 0, 4, 7, 19, 35, 69, 116, 204, 323, 523, 799, 1225, 1809, 2675, 3843, 5515, 7756, 10869, 14998, 20621, 27996, 37865, 50701, 67612, 89419, 117806, 154101, 200838, 260168, 335824, 431202, 551824, 702890, 892503, 1128577, 1422846, 1787183, 2238554
OFFSET
1,6
COMMENTS
Conjecture: column k of A060244 is asymptotic to (6*n)^((k-1)/2) * A000041(n) / (Pi^(k-1) * k!) ~ 2^((k-5)/2) * 3^((k-2)/2) * n^((k-3)/2) * exp(Pi*sqrt(2*n/3)) / (Pi^(k-1) * k!).
LINKS
FORMULA
G.f.: x^6 * (4 + 3*x + 4*x^2 + 2*x^3 - 4*x^5 - 6*x^6 - 6*x^7 - 5*x^8 - x^9 + x^10 + 5*x^11 + 3*x^12 + 3*x^13 + x^14 - x^15 - x^16 - x^17) / ((1 - x)^5 * (1 + x)^3 * (1 + x^2) * (1 - x + x^2) * (1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)) * Product_{k>=1} 1/(1 - x^k).
a(n) ~ exp(Pi*sqrt(2*n/3)) * n^(3/2) / (40*sqrt(2)*Pi^5).
a(n) ~ sqrt(3/2) * n^(5/2) * A000041(n) / (10*Pi^5).
MATHEMATICA
nmax = 30; col = 6; Flatten[{0, 0, 0, 0, 0, CoefficientList[Coefficient[Normal[Series[Product[Product[1/(1 - x^(i - j)*y^j), {j, 0, i}], {i, 2, nmax + col}], {x, 0, col}, {y, 0, nmax}]], x^col], y]}]
Rest[CoefficientList[Series[x^6 * (4 + 3*x + 4*x^2 + 2*x^3 - 4*x^5 - 6*x^6 - 6*x^7 - 5*x^8 - x^9 + x^10 + 5*x^11 + 3*x^12 + 3*x^13 + x^14 - x^15 - x^16 - x^17) / ((1 - x)^5 * (1 + x)^3 * (1 + x^2) * (1 - x + x^2) * (1 + x + x^2)^2*(1 + x + x^2 + x^3 + x^4)) / QPochhammer[x], {x, 0, 100}], x]]
Table[Sum[(k^4/17280 + 101*k^3/8640 + 1661*k^2/4320 - 23017*k/17280 - 2563/576 + Floor[(k-5)/4]/8 - 7*Floor[(k-5)/3]/18 - (19/192 + 7*k/12 + k^2/96) * Floor[(k-5)/2] + Floor[(k-4)/6]/6 - Floor[(k-4)/4]/8 - (4/3 + k/18) * Floor[(k-4)/3] - Floor[(k-3)/5]/5 + Floor[(k-2)/5]/5) * PartitionsP[n-k], {k, 6, n}], {n, 1, 100}]
CROSSREFS
Cf. A060244.
Sequence in context: A274691 A102991 A298350 * A323655 A062306 A323105
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Aug 27 2017
STATUS
approved