

A060247


Triangle whose rows are the degrees of the irreducible representations of the groups PSL(2,q) as q runs through the primes and prime powers.


4



1, 1, 2, 1, 1, 1, 3, 1, 3, 3, 4, 5, 1, 3, 3, 4, 5, 1, 3, 3, 6, 7, 8, 1, 7, 7, 7, 7, 8, 9, 9, 9, 1, 5, 5, 8, 8, 9, 10, 1, 5, 5, 10, 10, 11, 12, 12, 1, 7, 7, 12, 12, 12, 13, 14, 14, 1, 15, 15, 15, 15, 15, 15, 15, 15, 16, 17, 17, 17, 17, 17, 17, 17, 1, 9, 9, 16, 16, 16, 16, 17, 18, 18, 18
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,3


REFERENCES

J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker and R. A. Wilson, ATLAS of Finite Groups, Oxford Univ. Press, 1985.


LINKS

J. S. Kimberley, First 60 rows of A060247 triangle, flattened.


EXAMPLE

1,1,2; 1,1,1,3; 1,3,3,4,5; 1,3,3,4,5; ... (for q = 2,3,4,5, ...).


PROG

(MAGMA) CharacterTable(PSL(2, 7)); (say)
(MAGMA) &cat[[Degree(irred): irred in CharacterTable(PSL(2, q))]: q in [2..17] IsPrimePower(q)]; // Jason Kimberley, May 22 2010


CROSSREFS

q = A000961(n+1).
Row length sequence is A177744.
Consecutive row sequences from 3rd to 18th are: A003860, A003860, A003879, A003880, A003861, A003882, A003883, A003884, A003885, A003886, A003887, A003888, A003889, A003890, A003891, A003892.
Cf. A060246, A060240, A060241.
Sequence in context: A211095 A070091 A091981 * A060246 A161204 A123541
Adjacent sequences: A060244 A060245 A060246 * A060248 A060249 A060250


KEYWORD

tabf,nonn,nice,easy


AUTHOR

N. J. A. Sloane, Mar 22 2001


EXTENSIONS

Extended by Jason Kimberley, May 22 2010


STATUS

approved



