login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A192456
Numerators in triangle that leads to the Bernoulli numbers.
5
1, 1, 1, -1, 1, -1, 1, -2, 2, 1, -5, 1, 1, -1, 3, -8, 1, -7, 14, -4, 1, -4, 4, -64, 8, 1, -3, 9, -8, 12, 1, -5, 7, -40, 20, -32, 1, -11, 44, -44, 44, -16, 1, -2, 18, -64, 4, -192, 6112
OFFSET
0,8
COMMENTS
For the denominators and detailed information see A191302.
MAPLE
nmax:=14: mmax:=nmax: A164555:=proc(n): if n=1 then 1 else numer(bernoulli(n)) fi: end: A027642:=proc(n): if n=1 then 2 else denom(bernoulli(n)) fi: end: for m from 0 to 2*mmax do T(0, m):=A164555(m)/A027642(m) od: for n from 1 to nmax do for m from 0 to 2*mmax do T(n, m):=T(n-1, m+1)-T(n-1, m) od: od: seq(T(n, n+1), n=0..nmax): for n from 0 to nmax do ASPEC(n, 0):=2: for m from 1 to mmax do ASPEC(n, m):= (2*n+m)*binomial(n+m-1, m-1)/m od: od: for n from 0 to nmax do seq(ASPEC(n, m), m=0..mmax) od: for n from 0 to nmax do for m from 0 to 2*mmax do SBD(n, m):=0 od: od: for m from 0 to mmax do for n from 2*m to nmax do SBD(n, m):= T(m, m+1) od: od: for n from 0 to nmax do seq(SBD(n, m), m= 0..mmax/2) od: for n from 0 to nmax do BSPEC(n, 2) := SBD(n, 2)*ASPEC(2, n-4) od: for m from 0 to mmax do for n from 0 to nmax do BSPEC(n, m) := SBD(n, m)*ASPEC(m, n-2*m) od: od: for n from 0 to nmax do seq(BSPEC(n, m), m=0..mmax/2) od: seq(add(BSPEC(n, k), k=0..floor(n/2)) , n=0..nmax): Tx:=0: for n from 0 to nmax do for m from 0 to floor(n/2) do a(Tx):= numer(BSPEC(n, m)): Tx:=Tx+1: od: od: seq(a(n), n=0..Tx-1); # Johannes W. Meijer, Jul 02 2011
MATHEMATICA
(* a=ASPEC, b=BSPEC *) nmax = 13; a[n_, 0] = 2; a[n_, m_] := (2n+m)*Binomial[n+m-1, m-1]/m; b[n_] := BernoulliB[n]; b[1]=1/2; bb = Table[b[n], {n, 0, nmax}]; diff = Table[ Differences[bb, n], {n, 1, nmax}]; dd = Diagonal[diff]; sbd[n_, m_] := If[n >= 2m, -dd[[m+1]], 0]; b[n_, m_] := sbd[n, m]*a[m, n-2m]; Table[b[n, m], {n, 0, nmax}, {m, 0, Floor[n/2]}] // Flatten // Numerator (* Jean-François Alcover, Aug 09 2012 *)
CROSSREFS
Cf. A191302 (denominators).
Sequence in context: A291260 A350825 A218529 * A226948 A010243 A332963
KEYWORD
sign,frac,tabf
AUTHOR
Paul Curtz, Jul 01 2011
EXTENSIONS
Edited and Maple program added by Johannes W. Meijer, Jul 02 2011
STATUS
approved