login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A218529 Binomial transform of -1, -1, 1, 2, -5, -16, ... (signed variant of A000111). 0
-1, -2, -2, 1, 4, -17, -62, 271, 1384, -7937, -50522, 353791, 2702764, -22368257, -199360982, 1903757311, 19391512144, -209865342977, -2404879675442, 29088885112831, 370371188237524, -4951498053124097, -69348874393137902, 1015423886506852351, 15514534163557086904 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Any distribution of signs across A000111 defines a sequence with a different binomial transform. For example, the sign pattern +--++--++--... applied to A000111 leads to A217714, and this sequence here is constructed with the sign pattern --++--++--++... .

From another point of view, we can start from this sequence, build the array of successive differences, and can read the signed variant of A000111 off the left column:

   -1,  -2,  -2,   1,   4, -17, -62, ...

   -1,   0,   3,   3, -21, -45, ...

    1,   3,   0, -24, -24, ...

    2,  -3, -24,   0, ...

   -5, -21,  24, ...

  -16,  45, ...

   61, ...

See the array in A163747.

The unit digits in the sequence of absolute values enter a periodic sequence 2, 1, 4, 7, 2, 1, 4, 7, ... (period 4).

LINKS

Table of n, a(n) for n=0..24.

FORMULA

a(n) = A163747(n) - 1.

E.g.f.: exp(x)*(1-exp(2*x)-2*exp(x))/(1+exp(2*x)). - Philippe Deléham, Apr 01 2013

a(n) ~ n! * 2^(n+2)/Pi^(n+1) * (cos(Pi*n/2)-sin(Pi*n/2)). - Vaclav Kotesovec, Sep 24 2013

a(n) = (A122045(n) - 2^n(2*EulerE(n,1) + EulerE(n,3/2)))/2, where EulerE(n,x) is the n-th Euler polynomial. - Benedict W. J. Irwin, May 24 2016

MAPLE

seq(2^(n-1)*(euler(n, 1/2)-2*euler(n, 2/2)-euler(n, 3/2)), n=0..24); # Peter Luschny, Feb 06 2017

MATHEMATICA

nmax = 21; signedA111 = Table[ If[ EvenQ[ n], -EulerE[n], -(2^(n+1)*(2^(n+1) - 1)*BernoulliB[n+1])/(n+1)], {n, 0, nmax}]; Clear[t]; t[n_ , 0] := signedA111[[n+1]]; t[n_ , k_ ] := t[n, k] = t[n, k-1] + t[n+1, k-1]; a[n_] := t[0, n]; Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Apr 04 2013 *)

Table[(EulerE[n] - 2^n (2 EulerE[n, 1] + EulerE[n, 3/2]))/2, {n, 0, 20}] (* Benedict W. J. Irwin, May 24 2016 *)

CROSSREFS

Cf. A000111, A163747, A217714.

Sequence in context: A307456 A291260 A350825 * A192456 A226948 A010243

Adjacent sequences:  A218526 A218527 A218528 * A218530 A218531 A218532

KEYWORD

sign,less

AUTHOR

Paul Curtz, Mar 27 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified May 23 13:38 EDT 2022. Contains 353975 sequences. (Running on oeis4.)