OFFSET
0,3
COMMENTS
a(n) and differences are:
1, 0, -2, -3, 4, 15, -62;
-1, -2, -1, 7, 11, -77;
-1, 1, 8, 4, -88;
2, 7, -4, -92;
5, -11, -88;
-16, -77;
-61;
The absolute values of the first column are A000111(n).
The first column can be found via the Akiyama-Tanigawa algorithm. See the chapter on the Seidel triangle in Wikipedia's Bernoulli Number.
LINKS
FORMULA
a(n) = -A163982(n) - 1.
a(n) = Sum_{k=0..n} A109449(n,k)*floor((n-k+1)/2). - Philippe Deléham, Oct 27 2013
E.g.f.: 1/cosh(x) + tanh(x) + 1 - exp(x). - Sergei N. Gladkovskii, Nov 10 2014
EXAMPLE
a(0) = 1;
a(1) = 1 - 1 = 0;
a(2) = -1 - 2 + 1 = -2;
a(3) = 2 - 3 - 3 + 1 = -3;
a(4) = 5 + 8 - 6 - 4 + 1 = 4;
a(5) = -16 + 25 + 20 - 10 - 5 + 1 = 15;
a(6) = -61 - 96 + 75 + 40 - 15 - 6 + 1 = -62;
a(7) = 272 - 427 - 336 + 175 + 70 - 21 - 7 + 1 = -273; - Philippe Deléham, Oct 27 2013
G.f. = 1 - 2*x^2 - 3*x^3 + 4*x^4 + 15*x^5 - 62*x^6 - 273*x^7 + ...
MATHEMATICA
a[n_] := 2^n* EulerE[n, 1] + EulerE[n] - 1; Table[a[n], {n, 0, 26}] (* Jean-François Alcover, Mar 21 2013 *)
CROSSREFS
KEYWORD
sign
AUTHOR
Paul Curtz, Mar 21 2013
EXTENSIONS
More terms from Jean-François Alcover, Mar 21 2013
STATUS
approved