OFFSET
3,2
COMMENTS
a(n) is the total number of occurrences of 321 patterns in the set of all 123-avoiding n-permutations.
LINKS
Cheyne Homberger, Expected patterns in permutation classes, Electronic Journal of Combinatorics, 19(3) (2012), P43.
FORMULA
G.f.: 1/2*(32*x^4 - 88*x^3 + 52*x^2 + sqrt(-4*x + 1)*(36*x^3 - 34*x^2 + 10*x - 1) - 12*x + 1)/(64*x^4 - 48*x^3 + 12*x^2 - x).
Conjecture: -(n+1)*(25*n-3314)*a(n) -5*n*(5*n+9446)*a(n-1) +2*(594*n^2 +128863*n -142613)*a(n-2) +16*(-119*n^2-39230*n+87888)*a(n-3) -32*(2*n-7)*(53*n-8687)*a(n-4)=0. - R. J. Mathar, Oct 08 2016
EXAMPLE
a(3) = 1 since there is only one 321 pattern in the set {132, 213, 231, 312, 321}.
CROSSREFS
KEYWORD
nonn
AUTHOR
Cheyne Homberger, Mar 20 2013
STATUS
approved