The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090158 Odd-indexed terms of the binomial transform equals 1 and the even-indexed terms of the second binomial transform equals 1. 3
 1, 0, -3, 9, -15, 15, -63, 399, -255, -7425, -1023, 355839, -4095, -22360065, -16383, 1903790079, -65535, -209865211905, -262143, 29088885637119, -1048575, -4951498051026945, -4194303, 1015423886515240959, -16777215, -246921480190174429185 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Compare the first and 2nd binomial transforms of this sequence: first binomial={1,1,-2,1,4,1,-62,1,1384,1,-50522,1,2702764,..}; 2nd binomial={1,2,1,-1,1,17,1,-271,1,7937,1,-353791,..}; to that of the first and 2nd binomial transforms of A090145: first binomial of A090145={1,0,1,-3,1,15,1,-273,1,7935,1,..}; 2nd binomial of A090145={1,1,2,1,-4,1,62,1,-1384,1,50522,..}. Comparison reveals this e.g.f. relation of the two sequences: e.g.f.: exp(x)*G090158(x) + exp(2x)*G090145(x) = 2 + 2*sinh(x); e.g.f.: exp(2*x)*G090158(x) - exp(x)*G090145(x) = 2*sinh(x); thus G090158(x) = 2*(1+sinh(x) + exp(x)*sinh(x))/(exp(x)*(1+exp(2*x))) G090145(x) = 2*((1+sinh(x))*exp(x) - sinh(x))/(exp(x)*(1+exp(2*x))). LINKS FORMULA E.g.f.: 2*(1 + sinh(x) + exp(x)*sinh(x)) / (exp(x)*(1 + exp(2*x))). a(2n) = 1 - 2^(2n); 1 = sum_{k=0..2n-1} C(2n-1, k)*a(k); 1 = sum_{k=0..2n} 2^(2n-k)*C(2n, k)*a(k). MATHEMATICA With[{nn=30}, CoefficientList[Series[2 (1+Sinh[x]+Exp[x]Sinh[x])/ (Exp[x] (1+ Exp[2x])), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Feb 13 2016 *) CROSSREFS Cf. A090145. Sequence in context: A310326 A310327 A170841 * A030342 A273323 A061966 Adjacent sequences:  A090155 A090156 A090157 * A090159 A090160 A090161 KEYWORD sign AUTHOR Paul D. Hanna, Nov 22 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 27 07:02 EDT 2021. Contains 347673 sequences. (Running on oeis4.)