login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A090158
Odd-indexed terms of the binomial transform equals 1 and the even-indexed terms of the second binomial transform equals 1.
3
1, 0, -3, 9, -15, 15, -63, 399, -255, -7425, -1023, 355839, -4095, -22360065, -16383, 1903790079, -65535, -209865211905, -262143, 29088885637119, -1048575, -4951498051026945, -4194303, 1015423886515240959, -16777215, -246921480190174429185
OFFSET
0,3
COMMENTS
Compare the first and 2nd binomial transforms of this sequence:
first binomial={1,1,-2,1,4,1,-62,1,1384,1,-50522,1,2702764,..};
2nd binomial={1,2,1,-1,1,17,1,-271,1,7937,1,-353791,..};
to that of the first and 2nd binomial transforms of A090145:
first binomial of A090145={1,0,1,-3,1,15,1,-273,1,7935,1,..};
2nd binomial of A090145={1,1,2,1,-4,1,62,1,-1384,1,50522,..}.
Comparison reveals this e.g.f. relation of the two sequences:
e.g.f.: exp(x)*G090158(x) + exp(2x)*G090145(x) = 2 + 2*sinh(x);
e.g.f.: exp(2*x)*G090158(x) - exp(x)*G090145(x) = 2*sinh(x);
thus G090158(x) = 2*(1+sinh(x) + exp(x)*sinh(x))/(exp(x)*(1+exp(2*x)))
G090145(x) = 2*((1+sinh(x))*exp(x) - sinh(x))/(exp(x)*(1+exp(2*x))).
FORMULA
E.g.f.: 2*(1 + sinh(x) + exp(x)*sinh(x)) / (exp(x)*(1 + exp(2*x))).
a(2n) = 1 - 2^(2n);
1 = sum_{k=0..2n-1} C(2n-1, k)*a(k);
1 = sum_{k=0..2n} 2^(2n-k)*C(2n, k)*a(k).
MATHEMATICA
With[{nn=30}, CoefficientList[Series[2 (1+Sinh[x]+Exp[x]Sinh[x])/ (Exp[x] (1+ Exp[2x])), {x, 0, nn}], x] Range[0, nn]!] (* Harvey P. Dale, Feb 13 2016 *)
CROSSREFS
Cf. A090145.
Sequence in context: A310326 A310327 A170841 * A030342 A273323 A061966
KEYWORD
sign
AUTHOR
Paul D. Hanna, Nov 22 2003
STATUS
approved