login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A085738
Denominators in triangle formed from Bernoulli numbers.
14
1, 2, 2, 6, 3, 6, 1, 6, 6, 1, 30, 30, 15, 30, 30, 1, 30, 15, 15, 30, 1, 42, 42, 105, 105, 105, 42, 42, 1, 42, 21, 105, 105, 21, 42, 1, 30, 30, 105, 105, 105, 105, 105, 30, 30, 1, 30, 15, 105, 105, 105, 105, 15, 30, 1, 66, 66, 165, 165, 1155, 231, 1155, 165, 165, 66, 66
OFFSET
0,2
COMMENTS
Triangle is determined by rules 0) the top number is 1; 1) each number is the sum of the two below it; 2) it is left-right symmetric; 3) the numbers in each of the border rows, after the first 3, are alternately 0.
Up to signs this is the difference table of the Bernoulli numbers (see A212196). The Sage script below is based on L. Seidel's algorithm and does not make use of a library function for the Bernoulli numbers; in fact it generates the Bernoulli numbers on the fly. - Peter Luschny, May 04 2012
LINKS
Fabien Lange and Michel Grabisch, The interaction transform for functions on lattices Discrete Math. 309 (2009), no. 12, 4037-4048. [From N. J. A. Sloane, Nov 26 2011]
Ludwig Seidel, Über eine einfache Entstehungsweise der Bernoulli'schen Zahlen und einiger verwandten Reihen, Sitzungsberichte der mathematisch-physikalischen Classe der königlich bayerischen Akademie der Wissenschaften zu München, volume 7 (1877), 157-187. [Peter Luschny, May 04 2012]
FORMULA
T(n, 0) = (-1)^n*Bernoulli(n); T(n, k) = T(n-1, k-1) - T(n, k-1) for k=1..n. [Corrected (sign flipped) by R. J. Mathar, Jun 02 2010]
Let U(m, n) = (-1)^(m + n)*T(m+n, n). Then the e.g.f. for U(m, n) is (x - y)/(e^x - e^y). - Ira M. Gessel, Jun 12 2021
EXAMPLE
Triangle begins
1
1/2, 1/2
1/6, 1/3, 1/6
0, 1/6, 1/6, 0
-1/30, 1/30, 2/15, 1/30, -1/30
0, -1/30, 1/15, 1/15, -1/30, 0
1/42, -1/42, -1/105, 8/105, -1/105, -1/42, 1/42
0, 1/42, -1/21, 4/105, 4/105, -1/21, 1/42, 0
-1/30, 1/30, -1/105, -4/105, 8/105, -4/105, -1/105, 1/30, -1/30
MATHEMATICA
t[n_, 0] := (-1)^n BernoulliB[n];
t[n_, k_] := t[n, k] = t[n-1, k-1] - t[n, k-1];
Table[t[n, k] // Denominator, {n, 0, 10}, {k, 0, n}] (* Jean-François Alcover, Jun 04 2019 *)
PROG
(Sage) # uses[BernoulliDifferenceTable from A085737]
def A085738_list(n): return [q.denominator() for q in BernoulliDifferenceTable(n)]
A085738_list(6)
# Peter Luschny, May 04 2012
CROSSREFS
See A051714/A051715 for another triangle that generates the Bernoulli numbers.
Sequence in context: A277021 A275037 A174833 * A227608 A276484 A100641
KEYWORD
nonn,frac,tabl
AUTHOR
N. J. A. Sloane following a suggestion of J. H. Conway, Jul 23 2003
STATUS
approved