login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A022289
a(n) = n*(31*n + 1)/2.
16
0, 16, 63, 141, 250, 390, 561, 763, 996, 1260, 1555, 1881, 2238, 2626, 3045, 3495, 3976, 4488, 5031, 5605, 6210, 6846, 7513, 8211, 8940, 9700, 10491, 11313, 12166, 13050, 13965, 14911, 15888, 16896, 17935
OFFSET
0,2
FORMULA
a(n) = 31*n + a(n-1) - 15, for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010
G.f.: x*(16 + 15*x)/(1 - x)^3 . - R. J. Mathar, Sep 02 2016
a(n) = A000217(16*n) - A000217(15*n). In general, n*((2*k+1)*n + 1)/2 = A000217((k+1)*n) - A000217(k*n). - Bruno Berselli, Oct 13 2016
E.g.f.: (x/2)*(31*x + 32)*exp(x). - G. C. Greubel, Aug 23 2017
MATHEMATICA
Table[n (31 n + 1)/2, {n, 0, 40}] (* Bruno Berselli, Oct 13 2016 *)
LinearRecurrence[{3, -3, 1}, {0, 16, 63}, 40] (* Harvey P. Dale, Aug 10 2019 *)
PROG
(PARI) a(n)=n*(31*n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017
CROSSREFS
Cf. similar sequences of the form n*((2*k+1)*n + 1)/2: A000217 (k=0), A005449 (k=1), A005475 (k=2), A022265 (k=3), A022267 (k=4), A022269 (k=5), A022271 (k=6), A022273 (k=7), A022275 (k=8), A022277 (k=9), A022279 (k=10), A022281 (k=11), A022283 (k=12), A022285 (k=13), A022287 (k=14), this sequence (k=15).
Sequence in context: A118254 A356249 A066391 * A143860 A100176 A060091
KEYWORD
nonn,easy
STATUS
approved