login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A022285 a(n) = n*(27*n + 1)/2. 3
0, 14, 55, 123, 218, 340, 489, 665, 868, 1098, 1355, 1639, 1950, 2288, 2653, 3045, 3464, 3910, 4383, 4883, 5410, 5964, 6545, 7153, 7788, 8450, 9139, 9855, 10598, 11368, 12165, 12989, 13840, 14718, 15623 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..5000

Index entries for linear recurrences with constant coefficients, signature (3,-3,1).

FORMULA

a(n) = a(n-1) + 27*n - 13 for n>0, a(0)=0. - Vincenzo Librandi, Aug 04 2010

a(0)=0, a(1)=14, a(2)=55; for n>2, a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). -Harvey P. Dale, Sep 20 2011

G.f.: x*(13*x + 14)/(1-x)^3. - Harvey P. Dale, Sep 20 2011

a(n) = 12/(n+2)!*Sum_{j=0..n} (-1)^(n-j)*binomial(n,j)*(j+n)^(n+2). - Vladimir Kruchinin, Jun 04 2013

a(n) = A000217(14*n) - A000217(13*n). - Bruno Berselli, Oct 13 2016

E.g.f.: (x/2)*(27*x + 28)*exp(x). - G. C. Greubel, Aug 23 2017

MAPLE

A022285:=n->n*(27*n+1)/2; seq(A022285(k), k=0..100); # Wesley Ivan Hurt, Nov 04 2013

MATHEMATICA

Table[n (27 n + 1)/2, {n, 0, 40}] (* or *) LinearRecurrence[{3, -3, 1}, {0, 14, 55}, 40] (* Harvey P. Dale, Sep 20 2011 *)

PROG

(PARI) a(n)=n*(27*n+1)/2 \\ Charles R Greathouse IV, Jun 17 2017

CROSSREFS

Cf. similar sequences listed in A022289.

Sequence in context: A304294 A114012 A140784 * A100157 A144555 A192846

Adjacent sequences:  A022282 A022283 A022284 * A022286 A022287 A022288

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 19 22:36 EST 2020. Contains 332061 sequences. (Running on oeis4.)