login
A373667
Expansion of e.g.f. exp(x / (1 - x^2)^(5/2)).
1
1, 1, 1, 16, 61, 676, 5701, 60376, 798841, 9635536, 160878601, 2367914176, 44902245301, 807083463616, 16799688310861, 358223448539776, 8158048770370801, 199405713714155776, 4987832102850957841, 135848995301247809536, 3737769145322321702701
OFFSET
0,4
FORMULA
a(n) = n! * Sum_{k=0..floor(n/2)} binomial(5*n/2-4*k-1,k)/(n-2*k)!.
a(n) == 1 (mod 15).
PROG
(PARI) a(n) = n!*sum(k=0, n\2, binomial(5*n/2-4*k-1, k)/(n-2*k)!);
CROSSREFS
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Jun 13 2024
STATUS
approved