login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A367371
Expansion of the e.g.f. (exp(x) / (3 - 2*exp(x)))^(2/3).
0
1, 2, 8, 52, 468, 5372, 74948, 1230812, 23251908, 496661532, 11834467588, 311195370972, 8950935130948, 279540192840092, 9419760953149828, 340658973061341532, 13160048773006619588, 540850933969855649052, 23561995002376443953668
OFFSET
0,2
FORMULA
a(n) = Sum_{k=0..n} (-1)^(n-k) * (Product_{j=0..k-1} (3*j+2)) * Stirling2(n,k).
a(0) = 1; a(n) = Sum_{k=1..n} (-1)^k * (k/n - 3) * binomial(n,k) * a(n-k).
a(0) = 1; a(n) = 2*a(n-1) + 2*Sum_{k=1..n-1} binomial(n-1,k) * a(n-k).
PROG
(PARI) a(n) = sum(k=0, n, (-1)^(n-k)*prod(j=0, k-1, 3*j+2)*stirling(n, k, 2));
CROSSREFS
Cf. A365558.
Sequence in context: A368453 A007832 A111088 * A006351 A300697 A277499
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 15 2023
STATUS
approved