login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Thanks to everyone who made a donation during our annual appeal!
To see the list of donors, or make a donation, see the OEIS Foundation home page.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A229333 Product of sizes of all the nonempty subsets of an n-element set. 2
1, 1, 2, 24, 20736, 309586821120, 11501279977342425366528000000, 115744510977565557983391999957434605749927936000000000000000000000 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

Equivalently, a(n) is the number of functions from the nonempty subsets of {1,2,...,n} into {1,2,...,n} such that each subset is mapped to an element that it contains. - Geoffrey Critzer, Oct 05 2014

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..10

Aaron R. Bagheri, Classifying the Jacobian Groups of Adinkras, (2017), HMC Senior Theses.

FORMULA

a(n) = Product_{k=1..n} k^C(n,k) = Product_{k=1..n} k^(n!/((n-k)!*k!)).

log(a(n)) ~ 2^n*(log(n/2) - 1/(2*n) - 3/(4*n^2) - 2/n^3 - 65/(8*n^4) - 134/(3*n^5) - 1239/(4*n^6) - 2594/n^7 - 407409/(16*n^8) - 1433418/(5*n^9) - 14565881/(4*n^10) - ...). - Vaclav Kotesovec, Jul 24 2015

EXAMPLE

For n=3; nonempty subsets of 3-element set: {1}, {2}, {3}, {1,2}, {1,3}, {2,3}, {1,2,3}; product of numbers of elements of these subsets = 1*1*1*2*2*2*3 = 24. For n = 3; a(3) = [1^(3!/((3-1)!*1!))] * [2^(3!/((3-2)!*2!))] * [3^(3!/((3-3)!*3!))] = 1^3 * 2^3 * 3^1 = 24.

MAPLE

a:= n-> mul(k^binomial(n, k), k=1..n):

seq(a(n), n=0..8);  # Alois P. Heinz, Oct 05 2014

MATHEMATICA

Table[Times @@ Rest[Length /@ Subsets[Range[n]]], {n, 7}] (* T. D. Noe, Oct 01 2013 *)

CROSSREFS

Cf. A001787 (total size of all the subsets of an n-element set).

Sequence in context: A152687 A062716 A137888 * A108349 A000722 A098679

Adjacent sequences:  A229330 A229331 A229332 * A229334 A229335 A229336

KEYWORD

nonn

AUTHOR

Jaroslav Krizek, Sep 29 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified January 22 10:25 EST 2020. Contains 331144 sequences. (Running on oeis4.)