login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A225705 Composite squarefree numbers n such that p(i)-5 divides n+5, where p(i) are the prime factors of n. 3
21, 91, 187, 391, 3451, 4147, 6391, 7579, 8827, 9499, 9823, 11803, 15283, 21307, 22243, 26887, 29563, 36091, 42763, 49387, 62491, 63427, 84091, 89947, 107707, 116083, 126451, 139867, 155227, 227263, 270391, 287419, 302731, 317191, 320827, 376987, 381667, 433939 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

LINKS

Paolo P. Lava, Table of n, a(n) for n = 1..100

EXAMPLE

Prime factors of 6391 are 7, 11 and 83. We have that (6391+5)/(7-5)  =3198, (6391+5)/(11-5) = 1066 and (6391+5)/(83-5) = 82.

MAPLE

with(numtheory); A225705:=proc(i, j) local c, d, n, ok, p, t;

for n from 1 to i do if not isprime(n) then p:=ifactors(n)[2]; ok:=1;

for d from 1 to nops(p) do if p[d][2]>1 or p[d][1]=j then ok:=0; break; fi;

if  not type((n+j)/(p[d][1]-j), integer) then ok:=0; break; fi; od;

if ok=1 then print(n); fi; fi; od; end: A225705(10^9, 5);

MATHEMATICA

t = {}; n = 0; While[Length[t] < 50, n++; {p, e} = Transpose[FactorInteger[n]]; If[Length[p] > 1 && Union[e] == {1} && Mod[n, 5] > 0 && Union[Mod[n + 5, p - 5]] == {0}, AppendTo[t, n]]]; t (* T. D. Noe, May 17 2013 *)

CROSSREFS

Cf. A208728, A225702-A225704, A225706-A225720.

Sequence in context: A223363 A284440 A020248 * A259758 A203173 A194532

Adjacent sequences:  A225702 A225703 A225704 * A225706 A225707 A225708

KEYWORD

nonn

AUTHOR

Paolo P. Lava, May 13 2013

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 19 21:19 EDT 2021. Contains 345151 sequences. (Running on oeis4.)