login
A223363
6 X 6 X 6 triangular graph coloring a rectangular array: number of n X 1 0..20 arrays where 0..20 label nodes of the fully triangulated graph and every array movement to a horizontal or vertical neighbor moves along an edge of this graph.
1
21, 90, 420, 1992, 9552, 45984, 221760, 1070208, 5166336, 24943104, 120431616, 581486592, 2807648256, 13556490240, 65456455680, 316051587072, 1526031777792, 7368332673024, 35577456230400, 171783152467968, 829442428502016
OFFSET
1,1
COMMENTS
Column 1 of A223370.
LINKS
FORMULA
Empirical: a(n) = 6*a(n-1) - 4*a(n-2) - 8*a(n-3).
Conjectures from Colin Barker, Aug 20 2018: (Start)
G.f.: 3*x*(7 - 12*x - 12*x^2) / ((1 - 2*x)*(1 - 4*x - 4*x^2)).
a(n) = (3/2)*(2^n-(2-2*sqrt(2))^n*(-1+sqrt(2)) + 2^(1/2+n)*(1+sqrt(2))^n + (2*(1+sqrt(2)))^n).
(End)
EXAMPLE
Some solutions for n=3:
.20....2....4....4...18....4....6....7....6...17...14....4...11....8...15....5
.14....5....7....7...13....3....3....8....3...16...13....3...10....5...10....8
.20....2....8...11...14....1....4...12....6...11....9....6...16....2...11....5
Vertex neighbors:
0 -> 1 2
1 -> 0 2 3 4
2 -> 0 1 4 5
3 -> 1 4 6 7
4 -> 1 2 3 5 7 8
5 -> 2 4 8 9
6 -> 3 7 10 11
7 -> 3 4 6 8 11 12
8 -> 4 5 7 9 12 13
9 -> 5 8 13 14
10 -> 6 11 15 16
11 -> 6 7 10 12 16 17
12 -> 7 8 11 13 17 18
13 -> 8 9 12 14 18 19
14 -> 9 13 19 20
15 -> 10 16
16 -> 10 11 15 17
17 -> 11 12 16 18
18 -> 12 13 17 19
19 -> 13 14 18 20
20 -> 14 19
CROSSREFS
Cf. A223370.
Sequence in context: A211464 A268257 A223370 * A284440 A020248 A225705
KEYWORD
nonn
AUTHOR
R. H. Hardin, Mar 19 2013
STATUS
approved