|
|
A321035
|
|
Number of words of length 3n such that all letters of the quinary alphabet occur at least once and are introduced in ascending order and which can be built by repeatedly inserting triples of identical letters into the initially empty word.
|
|
2
|
|
|
273, 15300, 564585, 17493938, 495445275, 13337746758, 348484836788, 8943435290790, 227093583305420, 5731575551864799, 144208756776131553, 3624029726937528334, 91079326041351533935, 2291027079046386970458, 57709725323735510918970, 1456179679670608615334480
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
5,1
|
|
LINKS
|
Alois P. Heinz, Table of n, a(n) for n = 5..773
|
|
MAPLE
|
b:= (n, k)-> `if`(n=0, 1, k/n*add(binomial(3*n, j)*(n-j)*(k-1)^j, j=0..n-1)):
a:= n-> (k-> add((-1)^i*b(n, k-i)/(i!*(k-i)!), i=0..k))(5):
seq(a(n), n=5..25);
|
|
CROSSREFS
|
Column k=5 of A256311.
Sequence in context: A028534 A279114 A210270 * A225702 A307537 A295455
Adjacent sequences: A321032 A321033 A321034 * A321036 A321037 A321038
|
|
KEYWORD
|
nonn
|
|
AUTHOR
|
Alois P. Heinz, Oct 26 2018
|
|
STATUS
|
approved
|
|
|
|