login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A338278
G.f.: Sum_{n>=0} ( Product_{k=1..n} 1 + (1+x)^k ) / 3^(n+1).
1
1, 3, 30, 507, 12027, 367167, 13706049, 604806546, 30798675507, 1777651129164, 114681681511572, 8177632124654658, 638681988964923723, 54220733932072259388, 4971400927192150334778, 489591085640900144694105, 51541568078546978411976714, 5776152891297758939283199518
OFFSET
0,2
LINKS
FORMULA
G.f.: Sum_{n>=0} ( Product_{k=1..n} 1 + (1+x)^k ) / 3^(n+1).
G.f.: Sum_{n>=0} (1+x)^(n*(n+1)/2) / ( Product_{k=0..n} 3 - (1+x)^k ).
a(n) = 3 (mod 9) for n >= 1 (conjecture).
a(n) ~ c * d^n * n! / sqrt(n), where d = 6.79252412537713528039794944605685... and c = 0.4829777246139702860411263158... - Vaclav Kotesovec, Oct 24 2020
EXAMPLE
G.f.: A(x) = 1 + 3*x + 30*x^2 + 507*x^3 + 12027*x^4 + 367167*x^5 + 13706049*x^6 + 604806546*x^7 + 30798675507*x^8 + 1777651129164*x^9 + 114681681511572*x^10 + ...
where
A(x) = 1/3 + (1 + (1+x))/3^2 + (1 + (1+x))*(1 + (1+x)^2)/3^3 + (1 + (1+x))*(1 + (1+x)^2)*(1 + (1+x)^3)/3^4 + (1 + (1+x))*(1 + (1+x)^2)*(1 + (1+x)^3)*(1 + (1+x)^4)/3^5 + ... + (Product_{k=1..n} 1 + (1+x)^k)/3^(n+1) + ...
also
A(x) = 1/2 + (1+x)/(2*(3 - (1+x))) + (1+x)^3/(2*(3 - (1+x))*(3 - (1+x)^2)) + (1+x)^6/(2*(3 - (1+x))*(3 - (1+x)^2)*(3 - (1+x)^3)) + (1+x)^10/(2*(3 - (1+x))*(3 - (1+x)^2)*(3 - (1+x)^3)*(3 - (1+x)^4)) + ... + (1+x)^(n*(n+1)/2)/(Product_{k=0..n} 3 - (1+x)^k) + ...
CROSSREFS
Sequence in context: A201466 A064352 A366002 * A144739 A185827 A366009
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 20 2020
STATUS
approved