Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #14 Oct 24 2020 04:47:28
%S 1,3,30,507,12027,367167,13706049,604806546,30798675507,1777651129164,
%T 114681681511572,8177632124654658,638681988964923723,
%U 54220733932072259388,4971400927192150334778,489591085640900144694105,51541568078546978411976714,5776152891297758939283199518
%N G.f.: Sum_{n>=0} ( Product_{k=1..n} 1 + (1+x)^k ) / 3^(n+1).
%H Paul D. Hanna, <a href="/A338278/b338278.txt">Table of n, a(n) for n = 0..100</a>
%F G.f.: Sum_{n>=0} ( Product_{k=1..n} 1 + (1+x)^k ) / 3^(n+1).
%F G.f.: Sum_{n>=0} (1+x)^(n*(n+1)/2) / ( Product_{k=0..n} 3 - (1+x)^k ).
%F a(n) = 3 (mod 9) for n >= 1 (conjecture).
%F a(n) ~ c * d^n * n! / sqrt(n), where d = 6.79252412537713528039794944605685... and c = 0.4829777246139702860411263158... - _Vaclav Kotesovec_, Oct 24 2020
%e G.f.: A(x) = 1 + 3*x + 30*x^2 + 507*x^3 + 12027*x^4 + 367167*x^5 + 13706049*x^6 + 604806546*x^7 + 30798675507*x^8 + 1777651129164*x^9 + 114681681511572*x^10 + ...
%e where
%e A(x) = 1/3 + (1 + (1+x))/3^2 + (1 + (1+x))*(1 + (1+x)^2)/3^3 + (1 + (1+x))*(1 + (1+x)^2)*(1 + (1+x)^3)/3^4 + (1 + (1+x))*(1 + (1+x)^2)*(1 + (1+x)^3)*(1 + (1+x)^4)/3^5 + ... + (Product_{k=1..n} 1 + (1+x)^k)/3^(n+1) + ...
%e also
%e A(x) = 1/2 + (1+x)/(2*(3 - (1+x))) + (1+x)^3/(2*(3 - (1+x))*(3 - (1+x)^2)) + (1+x)^6/(2*(3 - (1+x))*(3 - (1+x)^2)*(3 - (1+x)^3)) + (1+x)^10/(2*(3 - (1+x))*(3 - (1+x)^2)*(3 - (1+x)^3)*(3 - (1+x)^4)) + ... + (1+x)^(n*(n+1)/2)/(Product_{k=0..n} 3 - (1+x)^k) + ...
%K nonn
%O 0,2
%A _Paul D. Hanna_, Oct 20 2020