login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002597
Number of partitions into one kind of 1's, two kinds of 2's, and three kinds of 3's.
(Formerly M2533 N1000)
9
1, 1, 3, 6, 9, 15, 25, 34, 51, 73, 97, 132, 178, 226, 294, 376, 466, 582, 722, 872, 1062, 1282, 1522, 1812, 2147, 2507, 2937, 3422, 3947, 4557, 5243, 5978, 6825, 7763, 8771, 9912, 11172, 12516, 14028, 15680, 17444, 19404, 21540, 23808, 26316, 29028, 31908
OFFSET
0,3
COMMENTS
Old name was: A generalized partition function.
REFERENCES
Gupta, Hansraj; A generalization of the partition function. Proc. Nat. Inst. Sci. India 17, (1951). 231-238.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. Gupta, A generalization of the partition function, Proc. Nat. Inst. Sci. India 17, (1951). 231-238. [Annotated scanned copy]
Index entries for linear recurrences with constant coefficients, signature (1, 2, 1, -4, -5, 3, 6, 3, -5, -4, 1, 2, 1, -1).
FORMULA
G.f.: 1/((1-x)*(1-x^2)^2*(1-x^3)^3). - Henry Bottomley, Sep 17 2001
Euler transform of [1, 2, 3, 0, 0, 0, 0, 0, ...]. - Thomas Wieder, Mar 13 2005
a(n)=floor((160*(n+1)*(-1)^(floor(n/3+2/3)+n)+80*(n^2+15*n+24)*(-1)^(floor(n/3+1/3)+n)+80*(n+2)*(n+11)*(-1)^(floor(n/3)+n)+405*(n+1)*(-1)^n+(n+1)*(2*n^4+68*n^3+852*n^2+4748*n+10735))/25920+1/2). - Tani Akinari, Oct 12 2012
MAPLE
a:= proc(n) option remember;
`if`(n=0, 1, add(add(d *`if`(d<4, d, 0),
d=numtheory[divisors](j)) *a(n-j), j=1..n)/n)
end:
seq(a(n), n=0..50); # Alois P. Heinz, Apr 21 2012
MATHEMATICA
a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*If[d<4, d, 0], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 50}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
PROG
(PARI) a(n)=round((n\3+1)*((n\3+4)*[1, -1, 0][1+n%3]/18-(n%3>1)/27)+(n+1)*(2*n^4+68*n^3+852*n^2+4748*n+10735+405*(-1)^n)/25920) \\ Tani Akinari, May 29 2014
CROSSREFS
Cf. A064349.
Sequence in context: A363615 A357989 A070885 * A360624 A287554 A308777
KEYWORD
nonn
EXTENSIONS
More terms from Henry Bottomley, Sep 17 2001
Better name from Joerg Arndt, Oct 12 2012
STATUS
approved