login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A002595
Denominators of Taylor series expansion of arcsin(x). Also arises from arccos(x), arccsc(x), arcsec(x), arcsinh(x).
(Formerly M4233 N1768)
6
1, 6, 40, 112, 1152, 2816, 13312, 10240, 557056, 1245184, 5505024, 12058624, 104857600, 226492416, 973078528, 2080374784, 23622320128, 30064771072, 635655159808, 446676598784, 11269994184704, 23639499997184, 6597069766656
OFFSET
0,2
COMMENTS
arcsin(x) is usually written as x + x^3/(2*3) + 1*3*x^5/(2*4*5) + 1*3*5*x^7/(2*4*6*7) + ..., = x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ... when reduced to lowest terms.
arccos(x) = Pi/2 - (x + 1/6*x^3 + 3/40*x^5 + 5/112*x^7 + 35/1152*x^9 + 63/2816*x^11 + ...).
arccsc(x) = 1/x+1/(6*x^3)+3/(40*x^5)+5/(112*x^7)+35/(1152*x^9)+63/(2816*x^11)+...
arcsec(x) = Pi/2 -(1/x+1/(6*x^3)+3/(40*x^5)+5/(112*x^7)+35/(1152*x^9)+63/(2816*x^11)+...)
arcsinh(x) = x-1/6*x^3+3/40*x^5-5/112*x^7+35/1152*x^9-63/2816*x^11+...
arccsc(x) = arcsin(1/x) and arcsec(x) = arccos(1/x): 1 < |x|
arccsch(x) = arcsinh(1/x) for 1 < |x|
Also denominator of (2n-1)!! / ((2n+1)*(2n)!!) (n=>0).
REFERENCES
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables).
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 88.
H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, Chap. 3.
Focus, vol. 16, no. 5, page 32, Oct 1996.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Jerome Spanier and Keith B. Oldham, "Atlas of Functions", Hemisphere Publishing Corp., 1987, chapter 31, equation 31:6:1 at page 290.
LINKS
Eric Weisstein's World of Mathematics, Inverse Cosecant.
Eric Weisstein's World of Mathematics, Inverse Cosine.
Eric Weisstein's World of Mathematics, Inverse Secant.
Eric Weisstein's World of Mathematics, Inverse Sine.
Eric Weisstein's World of Mathematics, Inverse Hyperbolic Cosecant.
Eric Weisstein's World of Mathematics, Inverse Hyperbolic Sine.
Eric Weisstein's World of Mathematics, Archimedes' Spiral.
FORMULA
a(n) = denominator((2*n)!/(2^(2*n)*(n)!^2*(2*n+1))). - Johannes W. Meijer, Jul 06 2009
MATHEMATICA
Denominator[Take[CoefficientList[Series[ArcSin[x], {x, 0, 50}], x], {2, -1, 2}]] (* Harvey P. Dale, Aug 06 2012 *)
PROG
(PARI) a(n) = denominator((2*n)!/(2^(2*n)*(n)!^2*(2*n+1))); \\ Stefano Spezia, Dec 31 2024
CROSSREFS
A055786(n) / a(n) = A001147(n) / ( A000165(n) * (2*n+1))
Cf. A162443 where BG1[ -3,n] = (-1)*A002595(n-1)/A055786(n-1) for n =>1. - Johannes W. Meijer, Jul 06 2009
a(n) = 2*A143582(n+1) for n>=1. - Filip Zaludek, Oct 25 2016
Sequence in context: A110424 A114079 A211065 * A263956 A229638 A210291
KEYWORD
nonn,frac,nice,easy
STATUS
approved