login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002593 a(n) = n^2*(2*n^2 - 1); also Sum_{k=0..n-1} (2k+1)^3.
(Formerly M5199 N2262)
15
0, 1, 28, 153, 496, 1225, 2556, 4753, 8128, 13041, 19900, 29161, 41328, 56953, 76636, 101025, 130816, 166753, 209628, 260281, 319600, 388521, 468028, 559153, 662976, 780625, 913276, 1062153, 1228528, 1413721, 1619100, 1846081 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
The m-th term, for m = A065549(n), is perfect (A000396). - Lekraj Beedassy, Jun 04 2002
Partial sums of A016755. - Lekraj Beedassy, Jan 06 2004
Also, the k-th triangular number, where k = 2n^2 - 1 = A056220(n), i.e., a(n) = A000217(A056220(n)). - Lekraj Beedassy, Jun 11 2004
Also, the j-th hexagonal number, where j = n^2 = A000290(n), i.e., a(n) = A000384(A000290(n)) and a(n) = A056220(n) * A000290(n) or j * k. This sequence is a subsequence of the hexagonal number sequence and retains the aspect intrinsic to the hexagonal number sequence that each number in this sequence can be found by multiplying its triangular number by its hexagonal number. - Bruce J. Nicholson, Aug 22 2017
Odd numbers and their squares both having the form 2x-+1, we may write (2r+1)^3 = (2r+1)*(2s-1), where s = centered squares = (r+1)^2 + r^2. Since 2r+1 = (r+1)^2 - r^2, it follows immediately from summing telescopingly over n-1, the product 2*{(r+1)^4 - r^4} - {(r+1)^2 - r^2}, that Sum_{r=0..n-1} (2r+1)^3 = 2*n^4 - n^2 = n^2*(2n^2 - 1). - Lekraj Beedassy, Jun 16 2004
a(n) is also the starting term in the sum of a number M(n) of consecutive cubed integers equaling a squared integer (A253724) for M(n) equal to twice a squared integer (A001105). Numbers a(n) such that a^3 + (a+1)^3 + ... + (a+M-1)^3 = c^2 has nontrivial solutions over the integers for M equal to twice a squared integer (A001105). If M is twice a squared integer, there always exists at least one nontrivial solution for the sum of M consecutive cubed integers starting from a^3 and equaling a squared integer c^2. For n >= 1, M(n) = 2n^2 (A001105), a(n) = M(M-1)/2 = n^2(2n^2 - 1), and c(n) = sqrt(M/2) (M(M^2-1)/2) = n^3(4n^4 - 1). The trivial solutions with M < 1 and a < 2 are not considered. - Vladimir Pletser, Jan 10 2015
Binomial transform of the sequence with offset 1 is (1, 27, 98, 120, 48, 0, 0, 0, ...). - Gary W. Adamson, Jul 23 2015
REFERENCES
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 169, #31.
F. E. Croxton and D. J. Cowden, Applied General Statistics. 2nd ed., Prentice-Hall, Englewood Cliffs, NJ, 1955, p. 742.
L. B. W. Jolley, Summation of Series. 2nd ed., Dover, NY, 1961, p. 7.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
F. E. Croxton and D. J. Cowden, Applied General Statistics, 2nd Ed., Prentice-Hall, Englewood Cliffs, NJ, 1955. [Annotated scans of just pages 742-743]
Neslihan Kilar, Abdelmejid Bayad, and Yilmaz Simsek, Finite sums involving trigonometric functions and special polynomials: analysis of generating functions and p-adic integrals, Appl. Anal. Disc. Math., hal-04535748, 2024. See p. 22.
Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992.
R. J. Stroeker, On the sum of consecutive cubes being a perfect square, Compositio Mathematica, 97 no. 1-2 (1995), pp. 295-307.
G. Xiao, Sigma Server, Operate on "(2*n-1)^3".
FORMULA
a(n) = A000217(A056220(n)). - Lekraj Beedassy, Jun 11 2004
G.f.: (-x^4 - 23*x^3 - 23*x^2 - x)/(x - 1)^5. - Harvey P. Dale, Mar 28 2011
a(n) = n^2*(2n^2 - 1). - Vladimir Pletser, Jan 10 2015
E.g.f.: exp(x)*x*(1 + 13*x + 24*x^2/2! + 12*x^3/3!). - Wolfdieter Lang, Mar 11 2017
a(n) = A000384(A000290(n)) = A056220(n) * A000290(n). - Bruce J. Nicholson, Aug 22 2017
From Amiram Eldar, Aug 25 2022: (Start)
Sum_{n>=1} 1/a(n) = 1 - Pi^2/6 - cot(Pi/sqrt(2))*Pi/sqrt(2).
Sum_{n>=1} (-1)^(n+1)/a(n) = cosec(Pi/sqrt(2))*Pi/sqrt(2) - Pi^2/12 - 1. (End)
MAPLE
A002593:=-z*(z+1)*(z**2+22*z+1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation
a:= n-> n^2*(2*n^2-1): seq(a(n), n=0..50); # Vladimir Pletser, Jan 10 2015
MATHEMATICA
CoefficientList[Series[(-x^4-23x^3-23x^2-x)/(x-1)^5, {x, 0, 80}], x] (* or *)
Table[ n^2 (2n^2-1), {n, 0, 80}] (* Harvey P. Dale, Mar 28 2011 *)
Join[{0}, Accumulate[Range[1, 91, 2]^3]] (* or *) LinearRecurrence[{5, -10, 10, -5, 1}, {0, 1, 28, 153, 496}, 40] (* Harvey P. Dale, Mar 22 2017 *)
PROG
(Magma) [n^2*(2*n^2 - 1): n in [0..40]]; // Vincenzo Librandi, Sep 07 2011
(PARI) a(n) = n^2*(2*n^2 - 1) \\ Charles R Greathouse IV, Feb 07 2017
CROSSREFS
Sequence in context: A219887 A271636 A188778 * A015881 A026910 A172220
KEYWORD
nonn,nice,easy
AUTHOR
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified September 7 10:38 EDT 2024. Contains 375730 sequences. (Running on oeis4.)