|
|
A271636
|
|
a(n) = 4*n*(4*n^2 + 3).
|
|
2
|
|
|
0, 28, 152, 468, 1072, 2060, 3528, 5572, 8288, 11772, 16120, 21428, 27792, 35308, 44072, 54180, 65728, 78812, 93528, 109972, 128240, 148428, 170632, 194948, 221472, 250300, 281528, 315252, 351568, 390572, 432360, 477028, 524672, 575388, 629272, 686420
(list;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
0,2
|
|
COMMENTS
|
This is the case h=0 of the identity 4*n*(4*n^2 + 3*(2*h + 1)^2) = (2*n - 2*h - 1)^3 + (2*n + 2*h + 1)^3.
|
|
LINKS
|
|
|
FORMULA
|
O.g.f.: 4*x*(7 + 10*x + 7*x^2)/(1 - x)^4.
a(n) = -a(-n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
|
|
MATHEMATICA
|
Table[4 n (4 n^2 + 3), {n, 0, 50}]
|
|
PROG
|
(Magma) [4*n*(4*n^2+3): n in [0..50]];
(PARI) x='x+O('x^99); concat(0, Vec(x*(28+40*x+28*x^2)/(1-x)^4)) \\ Altug Alkan, Apr 11 2016
(Python) for n in range(0, 1000):print(4*n*(4*n**2+3)) # Soumil Mandal, Apr 11 2016
|
|
CROSSREFS
|
|
|
KEYWORD
|
nonn,easy
|
|
AUTHOR
|
|
|
EXTENSIONS
|
|
|
STATUS
|
approved
|
|
|
|