login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A271636
a(n) = 4*n*(4*n^2 + 3).
2
0, 28, 152, 468, 1072, 2060, 3528, 5572, 8288, 11772, 16120, 21428, 27792, 35308, 44072, 54180, 65728, 78812, 93528, 109972, 128240, 148428, 170632, 194948, 221472, 250300, 281528, 315252, 351568, 390572, 432360, 477028, 524672, 575388, 629272, 686420
OFFSET
0,2
COMMENTS
This is the case h=0 of the identity 4*n*(4*n^2 + 3*(2*h + 1)^2) = (2*n - 2*h - 1)^3 + (2*n + 2*h + 1)^3.
Subsequence of A004999 and, after 0, second bisection of A153976.
FORMULA
O.g.f.: 4*x*(7 + 10*x + 7*x^2)/(1 - x)^4.
E.g.f.: 4*x*(7 + 12*x + 4*x^2)*exp(x). - Ilya Gutkovskiy, Apr 11 2016
a(n) = -a(-n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
a(n) = 4*A229183(2*n). - Bruno Berselli, Apr 11 2016
MATHEMATICA
Table[4 n (4 n^2 + 3), {n, 0, 50}]
PROG
(Magma) [4*n*(4*n^2+3): n in [0..50]];
(PARI) x='x+O('x^99); concat(0, Vec(x*(28+40*x+28*x^2)/(1-x)^4)) \\ Altug Alkan, Apr 11 2016
(Python) for n in range(0, 1000):print(4*n*(4*n**2+3)) # Soumil Mandal, Apr 11 2016
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vincenzo Librandi, Apr 11 2016
EXTENSIONS
Edit and extended by Bruno Berselli, Apr 12 2016
STATUS
approved