login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A271636 a(n) = 4*n*(4*n^2 + 3). 2
0, 28, 152, 468, 1072, 2060, 3528, 5572, 8288, 11772, 16120, 21428, 27792, 35308, 44072, 54180, 65728, 78812, 93528, 109972, 128240, 148428, 170632, 194948, 221472, 250300, 281528, 315252, 351568, 390572, 432360, 477028, 524672, 575388, 629272, 686420 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

This is the case h=0 of the identity 4*n*(4*n^2 + 3*(2*h + 1)^2) = (2*n - 2*h - 1)^3 + (2*n + 2*h + 1)^3.

Subsequence of A004999 and, after 0, second bisection of A153976.

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).

FORMULA

O.g.f.: 4*x*(7 + 10*x + 7*x^2)/(1 - x)^4.

E.g.f.: 4*x*(7 + 12*x + 4*x^2)*exp(x). - Ilya Gutkovskiy, Apr 11 2016

a(n) = -a(-n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).

a(n) = 4*A229183(2*n). - Bruno Berselli, Apr 11 2016

MATHEMATICA

Table[4 n (4 n^2 + 3), {n, 0, 50}]

PROG

(MAGMA) [4*n*(4*n^2+3): n in [0..50]];

(PARI) x='x+O('x^99); concat(0, Vec(x*(28+40*x+28*x^2)/(1-x)^4)) \\ Altug Alkan, Apr 11 2016

(Python) for n in range(0, 1000):print(4*n*(4*n**2+3)) # Soumil Mandal, Apr 11 2016

CROSSREFS

Cf. A004999, A153976, A229183.

Sequence in context: A069917 A028380 A219887 * A188778 A002593 A015881

Adjacent sequences:  A271633 A271634 A271635 * A271637 A271638 A271639

KEYWORD

nonn,easy

AUTHOR

Vincenzo Librandi, Apr 11 2016

EXTENSIONS

Edit and extended by Bruno Berselli, Apr 12 2016

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified July 26 17:37 EDT 2021. Contains 346294 sequences. (Running on oeis4.)