login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 4*n*(4*n^2 + 3).
2

%I #40 Sep 08 2022 08:46:16

%S 0,28,152,468,1072,2060,3528,5572,8288,11772,16120,21428,27792,35308,

%T 44072,54180,65728,78812,93528,109972,128240,148428,170632,194948,

%U 221472,250300,281528,315252,351568,390572,432360,477028,524672,575388,629272,686420

%N a(n) = 4*n*(4*n^2 + 3).

%C This is the case h=0 of the identity 4*n*(4*n^2 + 3*(2*h + 1)^2) = (2*n - 2*h - 1)^3 + (2*n + 2*h + 1)^3.

%C Subsequence of A004999 and, after 0, second bisection of A153976.

%H Vincenzo Librandi, <a href="/A271636/b271636.txt">Table of n, a(n) for n = 0..1000</a>

%H <a href="/index/Rec#order_04">Index entries for linear recurrences with constant coefficients</a>, signature (4,-6,4,-1).

%F O.g.f.: 4*x*(7 + 10*x + 7*x^2)/(1 - x)^4.

%F E.g.f.: 4*x*(7 + 12*x + 4*x^2)*exp(x). - _Ilya Gutkovskiy_, Apr 11 2016

%F a(n) = -a(-n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).

%F a(n) = 4*A229183(2*n). - _Bruno Berselli_, Apr 11 2016

%t Table[4 n (4 n^2 + 3), {n, 0, 50}]

%o (Magma) [4*n*(4*n^2+3): n in [0..50]];

%o (PARI) x='x+O('x^99); concat(0, Vec(x*(28+40*x+28*x^2)/(1-x)^4)) \\ _Altug Alkan_, Apr 11 2016

%o (Python) for n in range(0,1000):print(4*n*(4*n**2+3)) # _Soumil Mandal_, Apr 11 2016

%Y Cf. A004999, A153976, A229183.

%K nonn,easy

%O 0,2

%A _Vincenzo Librandi_, Apr 11 2016

%E Edit and extended by _Bruno Berselli_, Apr 12 2016