login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A211065
Number of 2 X 2 matrices having all terms in {1,...,n} and odd determinant.
4
0, 6, 40, 96, 288, 486, 1056, 1536, 2800, 3750, 6120, 7776, 11760, 14406, 20608, 24576, 33696, 39366, 52200, 60000, 77440, 87846, 110880, 124416, 154128, 171366, 208936, 230496, 277200, 303750, 360960, 393216, 462400, 501126, 583848
OFFSET
1,2
COMMENTS
A211064(n)+A211065(n)=4^n.
For a guide to related sequences, see A210000.
FORMULA
From Chai Wah Wu, Nov 27 2016: (Start)
a(n) = (2*n + 1 -(-1)^n)^2*(6*n + 1 -(-1)^n)*(2*n - 1 + (-1)^n)/128.
a(n) = a(n-1) + 4*a(n-2) - 4*a(n-3) - 6*a(n-4) + 6*a(n-5) + 4*a(n-6) - 4*a(n-7) - a(n-8) + a(n-9) for n > 9.
G.f.: -2*x^2*(3*x^5 + 5*x^4 + 28*x^3 + 16*x^2 + 17*x + 3)/((x - 1)^5*(x + 1)^4).
(End)
MATHEMATICA
a = 1; b = n; z1 = 35;
t[n_] := t[n] = Flatten[Table[w*z - x*y, {w, a, b}, {x, a, b}, {y, a, b}, {z, a, b}]]
c[n_, k_] := c[n, k] = Count[t[n], k]
u[n_] := Sum[c[n, 2 k], {k, -2*n^2, 2*n^2}]
v[n_] := Sum[c[n, 2 k - 1], {k, -2*n^2, 2*n^2}]
Table[u[n], {n, 1, z1}] (* A211064 *)
Table[v[n], {n, 1, z1}] (* A211065 *)
CROSSREFS
Cf. A210000.
Sequence in context: A217074 A110424 A114079 * A002595 A263956 A229638
KEYWORD
nonn
AUTHOR
Clark Kimberling, Mar 31 2012
STATUS
approved