login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

Number of partitions into one kind of 1's, two kinds of 2's, and three kinds of 3's.
(Formerly M2533 N1000)
9

%I M2533 N1000 #44 Jun 25 2023 15:52:42

%S 1,1,3,6,9,15,25,34,51,73,97,132,178,226,294,376,466,582,722,872,1062,

%T 1282,1522,1812,2147,2507,2937,3422,3947,4557,5243,5978,6825,7763,

%U 8771,9912,11172,12516,14028,15680,17444,19404,21540,23808,26316,29028,31908

%N Number of partitions into one kind of 1's, two kinds of 2's, and three kinds of 3's.

%C Old name was: A generalized partition function.

%D Gupta, Hansraj; A generalization of the partition function. Proc. Nat. Inst. Sci. India 17, (1951). 231-238.

%D N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

%D N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

%H Alois P. Heinz, <a href="/A002597/b002597.txt">Table of n, a(n) for n = 0..1000</a>

%H H. Gupta, <a href="/A002597/a002597.pdf">A generalization of the partition function</a>, Proc. Nat. Inst. Sci. India 17, (1951). 231-238. [Annotated scanned copy]

%H <a href="/index/Rec#order_14">Index entries for linear recurrences with constant coefficients</a>, signature (1, 2, 1, -4, -5, 3, 6, 3, -5, -4, 1, 2, 1, -1).

%F G.f.: 1/((1-x)*(1-x^2)^2*(1-x^3)^3). - _Henry Bottomley_, Sep 17 2001

%F Euler transform of [1, 2, 3, 0, 0, 0, 0, 0, ...]. - _Thomas Wieder_, Mar 13 2005

%F a(n)=floor((160*(n+1)*(-1)^(floor(n/3+2/3)+n)+80*(n^2+15*n+24)*(-1)^(floor(n/3+1/3)+n)+80*(n+2)*(n+11)*(-1)^(floor(n/3)+n)+405*(n+1)*(-1)^n+(n+1)*(2*n^4+68*n^3+852*n^2+4748*n+10735))/25920+1/2). - _Tani Akinari_, Oct 12 2012

%p a:= proc(n) option remember;

%p `if`(n=0, 1, add(add(d *`if`(d<4, d, 0),

%p d=numtheory[divisors](j)) *a(n-j), j=1..n)/n)

%p end:

%p seq(a(n), n=0..50); # _Alois P. Heinz_, Apr 21 2012

%t a[n_] := a[n] = If[n == 0, 1, Sum[Sum[d*If[d<4, d, 0], {d, Divisors[j]}]*a[n-j], {j, 1, n}]/n]; Table[a[n], {n, 0, 50}] (* _Jean-François Alcover_, Mar 13 2014, after _Alois P. Heinz_ *)

%o (PARI) a(n)=round((n\3+1)*((n\3+4)*[1,-1,0][1+n%3]/18-(n%3>1)/27)+(n+1)*(2*n^4+68*n^3+852*n^2+4748*n+10735+405*(-1)^n)/25920) \\ _Tani Akinari_, May 29 2014

%Y Cf. A064349.

%K nonn

%O 0,3

%A _N. J. A. Sloane_

%E More terms from _Henry Bottomley_, Sep 17 2001

%E Better name from _Joerg Arndt_, Oct 12 2012