login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002600 A generalized partition function.
(Formerly M4686 N2002)
2
1, 10, 25, 37, 42, 48, 79, 145, 244, 415, 672, 1100, 1722, 2727, 4193, 6428, 9658, 14478, 21313, 31304, 45329, 65311, 93074, 132026, 185413, 259242, 359395, 495839, 679175, 926064, 1254360, 1691753, 2268267, 3028345, 4021954, 5320139, 7003154 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
REFERENCES
Hansraj Gupta, A generalization of the partition function. Proc. Nat. Inst. Sci. India 17 (1951), 231-238.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Hansraj Gupta, A generalization of the partition function, Proc. Nat. Inst. Sci. India 17 (1951), 231-238. [Annotated scanned copy]
MAPLE
J:= m-> product((1-x^j)^(-j), j=1..m): a:= t-> coeff(series(J(min(6, t)), x, 1+max(6, t)), x, max(6, t)): seq(a(n), n=1..40); # Alois P. Heinz, Jul 20 2009
MATHEMATICA
J[m_] := Product[(1-x^j)^-j, {j, 1, m}]; a[t_] := SeriesCoefficient[J[Min[6, t]], {x, 0, Max[6, t]}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *)
CROSSREFS
Sequence in context: A345651 A154057 A074814 * A087473 A014120 A003001
KEYWORD
nonn
AUTHOR
EXTENSIONS
More terms from Alois P. Heinz, Jul 20 2009
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 20 00:26 EDT 2024. Contains 371798 sequences. (Running on oeis4.)