The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002600 A generalized partition function. (Formerly M4686 N2002) 2
 1, 10, 25, 37, 42, 48, 79, 145, 244, 415, 672, 1100, 1722, 2727, 4193, 6428, 9658, 14478, 21313, 31304, 45329, 65311, 93074, 132026, 185413, 259242, 359395, 495839, 679175, 926064, 1254360, 1691753, 2268267, 3028345, 4021954, 5320139, 7003154 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 REFERENCES Gupta, Hansraj; A generalization of the partition function. Proc. Nat. Inst. Sci. India 17, (1951). 231-238. N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Vincenzo Librandi, Table of n, a(n) for n = 1..1000 H. Gupta, A generalization of the partition function, Proc. Nat. Inst. Sci. India 17, (1951). 231-238. [Annotated scanned copy] MAPLE J:= m-> product((1-x^j)^(-j), j=1..m): a:= t-> coeff(series(J(min(6, t)), x, 1+max(6, t)), x, max(6, t)): seq(a(n), n=1..40); # Alois P. Heinz, Jul 20 2009 MATHEMATICA J[m_] := Product[(1-x^j)^-j, {j, 1, m}]; a[t_] := SeriesCoefficient[J[Min[6, t]], {x, 0, Max[6, t]}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Mar 13 2014, after Alois P. Heinz *) CROSSREFS Sequence in context: A014090 A154057 A074814 * A087473 A014120 A003001 Adjacent sequences:  A002597 A002598 A002599 * A002601 A002602 A002603 KEYWORD nonn AUTHOR EXTENSIONS More terms from Alois P. Heinz, Jul 20 2009 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 5 03:31 EST 2020. Contains 338943 sequences. (Running on oeis4.)