login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A345651
Fourth column of A008296.
2
1, 10, 25, -35, 49, 0, -820, 9020, -87164, 859144, -8965320, 100136400, -1199838576, 15406135488, -211479420096, 3094582896000, -48129022468224, 793274283938304, -13818265424460288, 253731538514893824, -4899371564756837376, 99261476593521868800
OFFSET
4,2
LINKS
Louis Comtet, Advanced Combinatorics, Reidel, 1974, p. 139, b(n,4).
FORMULA
a(n) = A008296(n,4).
a(n) = (-1)^n*(4*H(n-5,1)^3 + 8*H(n-5,3) - 12*H(n-5,2)*H(n-5,1) - 25*H(n-5,1)^2 + 25*H(n-5,2) + 35*H(n-5,1) - 10)*(n-5)! for n >= 5 where H(n,1) = Sum_{j=1..n} 1/j is the n-th harmonic number, H(n,2) = Sum_{j=1..n} 1/j^2 and H(n,3) = Sum_{j=1..n} 1/j^3.
a(n) = Sum_{m=4..n} binomial(m,4) * 4^(m-4) * Stirling1(n,m). - Alois P. Heinz, Aug 26 2021
Conjecture: D-finite with recurrence a(n) +2*(2*n-13)*a(n-1) +(6*n^2-84*n+295)*a(n-2) +(2*n-15)*(2*n^2-30*n+113)*a(n-3) +(n-8)^4*a(n-4)=0. - R. J. Mathar, Sep 15 2021
MAPLE
b:= proc(n, k) option remember; `if`(n=k, 1, `if`(k=0, 0,
(n-1)*b(n-2, k-1)+b(n-1, k-1)+(k-n+1)*b(n-1, k)))
end:
a:= n-> b(n, 4):
seq(a(n), n=4..28); # Alois P. Heinz, Aug 26 2021
# alternative
seq(A008296(n, 4), n=4..70) ; # R. J. Mathar, Sep 15 2021
MATHEMATICA
a[1, 1] = a[2, 1] = 1; a[n_, 1] = (-1)^n (n - 2)!;
a[n_, n_] = 1;
a[n_, k_] := a[n, k] = (n - 1) a[n - 2, k - 1] +
a[n - 1, k - 1] + (k - n + 1) a[n - 1, k];
Flatten[Table[N[a[n + 4, 4], 10], {n, 1, 400}]]
PROG
(PARI) a(n) = sum(m=4, n, binomial(m, 4)*4^(m-4)*stirling(n, m, 1)); \\ Michel Marcus, Sep 14 2021
CROSSREFS
KEYWORD
sign
AUTHOR
Luca Onnis, Aug 26 2021
STATUS
approved