Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #29 Nov 15 2020 03:11:34
%S 1,6,360,60480,19958400,10897286400,8892185702400,10137091700736000,
%T 15388105201717248000,30006805143348633600000,
%U 73096577329197271449600000,217535414131691079834009600000
%N a(n) = (3*n)!/n!.
%C Also a(n) = (((n)!)^2)*A006480(n). [corrected by _Johannes W. Meijer_, Mar 02 2009]
%C a(n) is the number of ways to partition the set {1,2,...,3n} into n blocks of size 3 and then linearly order the elements within each block. - _Geoffrey Critzer_, Dec 30 2012
%H Harry J. Smith, <a href="/A064350/b064350.txt">Table of n, a(n) for n = 0..70</a>
%H Karol A. Penson and Allan I. Solomon, <a href="https://doi.org/10.1142/9789812777850_0066">Coherent states from combinatorial sequences</a>, in: E. Kapuscik and A. Horzela (eds.), Quantum theory and symmetries, World Scientific, 2002, pp. 527-530; <a href="https://arxiv.org/abs/quant-ph/0111151">arXiv preprint</a>, arXiv:quant-ph/0111151, 2001.
%F Integral representation as n-th moment of a positive function on a positive half-axis, in Maple notation: a(n)=int(x^n*BesselK(1/3, 2*sqrt(x/27))/(3*Pi*sqrt(x)), x=0..infinity), n=0, 1, ...
%F A recursive formula: a(n) = (27 * (n - 1)^2 + 27 * (n - 1) + 6) * a(n - 1) with a(0) = 1. An explicit formula following from the recursion equation: a(n) = (3/2)*27^n*GAMMA(n+2/3)*GAMMA(n+1/3)/(Pi*3^(1/2)). - _Thomas Wieder_, Nov 15 2004
%F E.g.f.: (of aerated sequence) 2*cos(arcsin((3*sqrt(3)*x/2)/3))/sqrt(4-27*x^2). - _Paul Barry_, Jul 27 2010
%F E.g.f.: (with interpolated zeros) exp(x^3). - _Geoffrey Critzer_, Dec 30 2012
%F Sum_{n>=1} 1/a(n) = A248759. - _Amiram Eldar_, Nov 15 2020
%t Table[(3n)!/n!,{n,0,20}] (* _Geoffrey Critzer_, Dec 30 2012 *)
%o (PARI) { t=f=1; for (n=0, 70, if (n, t*=3*n*(3*n - 1)*(3*n - 2); f*=n); write("b064350.txt", n, " ", t/f) ) } \\ _Harry J. Smith_, Sep 12 2009
%Y Cf. A006480, A248759.
%Y From _Johannes W. Meijer_, Mar 07 2009: (Start)
%Y Equals A001525*3!
%Y Equals row sums of A157704 and A157705. (End)
%K nonn
%O 0,2
%A _Karol A. Penson_, Sep 18 2001
%E a(11) from _Harry J. Smith_, Sep 12 2009