OFFSET
1,1
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 1..3000
Index entries for linear recurrences with constant coefficients, signature (3,-3,1).
FORMULA
a(n) = A005563(3*n-1). - Paul Curtz, Oct 28 2008
a(2*n) = A136017(n). - Paul Curtz, Sep 30 2008
G.f.: x*(-8-11*x+x^2) / ( x-1 )^3 . - R. J. Mathar, Jul 01 2011
From Amiram Eldar, Jul 31 2020: (Start)
Sum_{n>=1} 1/a(n) = 1/2 - sqrt(3)*Pi/18.
Sum_{n>=1} (-1)^(n+1)/a(n) = sqrt(3)*Pi/9 - 1/2. (End)
From Amiram Eldar, Feb 04 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 2*Pi/(3*sqrt(3)) (A248897).
Product_{n>=1} (1 - 1/a(n)) = sqrt(2/3)*sin(sqrt(2)*Pi/3). (End)
a(n) = a(-n) for all n in Z. Sum_{n in Z} 1/a(n) = -Pi/3^(3/2) = -A073010. - Michael Somos, May 21 2023
MATHEMATICA
Table[9n^2 - 1, {n, 1, 100}]
LinearRecurrence[{3, -3, 1}, {8, 35, 80}, 50] (* Harvey P. Dale, Oct 09 2012 *)
PROG
(Magma) [9*n^2-1: n in [1..50]]; // Vincenzo Librandi, May 09 2011
(PARI) a(n)=9*n^2-1 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Artur Jasinski, Dec 10 2007
STATUS
approved