|
|
A248897
|
|
Decimal expansion of Sum_{i >= 0} (i!)^2/(2*i+1)!.
|
|
8
|
|
|
1, 2, 0, 9, 1, 9, 9, 5, 7, 6, 1, 5, 6, 1, 4, 5, 2, 3, 3, 7, 2, 9, 3, 8, 5, 5, 0, 5, 0, 9, 4, 7, 7, 0, 4, 8, 8, 1, 8, 9, 3, 7, 7, 4, 9, 8, 7, 2, 8, 4, 9, 3, 7, 1, 7, 0, 4, 6, 5, 8, 9, 9, 5, 6, 9, 2, 5, 4, 1, 5, 4, 5, 4, 0, 8, 4, 2, 3, 5, 9, 2, 2, 4, 5, 6, 0, 8
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)
|
|
|
OFFSET
|
1,2
|
|
COMMENTS
|
Value of the Borwein-Borwein function I_3(a,b) for a = b = 1. - Stanislav Sykora, Apr 16 2015
The area of a circle circumscribing a unit-area regular hexagon. - Amiram Eldar, Nov 05 2020
|
|
REFERENCES
|
George Boros and Victor H. Moll, Irresistible integrals, Cambridge University Press (2006), pp. 120-121.
|
|
LINKS
|
Table of n, a(n) for n=1..87.
Xavier Gourdon and Pascal Sebah, Collection of series for Pi (see paragraph 7).
Richard Kershner, The Number of Circles Covering a Set, American Journal of Mathematics, 61(3), 665-671.
László Fejes Tóth, An Inequality concerning polyhedra, Bull. Amer. Math. Soc. 54 (1948), 139-146. See (9) p. 146.
Eric Weisstein's World of Mathematics, Arithmetic-Geometric Mean, equations 26-32.
|
|
FORMULA
|
Equals 2*sqrt(3)*Pi/9 = 1 + 1/6 + 1/30 + 1/140 + 1/630 + 1/2772 + 1/12012 + ...
Equals m*I_3(m,m) = m*Integral_{x>=0} (x/(m^3+x^3)), for any m>0. - Stanislav Sykora, Apr 16 2015
Equals Integral_{x>=0} (1/(1+x^3)) dx. - Robert FERREOL, Dec 23 2016
From Peter Bala, Oct 27 2019: (Start)
Equals 3/4*Sum_{n >= 0} (n+1)!*(n+2)!/(2*n+3)!.
Equals Sum_{n >= 1} 3^(n-1)/(n*binomial(2*n,n)).
Equals 2*Sum_{n >= 1} 1/(n*binomial(2*n,n)). See Boros and Moll, pp. 120-121.
Equals Integral_{x = 0..1} 1/(1 - x^3)^(1/3) dx = Sum_{n >= 0} (-1)^n*binomial(-1/3,n) /(3*n + 1).
Equals 2*Sum_{n >= 1} 1/((3*n-1)*(3*n-2)) = 2*(1 - 1/2 + 1/4 - 1/5 + 1/7 - 1/8 + ...) (added Oct 30 2019). (End)
Equals Product_{k>=1} 9*k^2/(9*k^2 - 1). - Amiram Eldar, Aug 04 2020
|
|
EXAMPLE
|
1.2091995761561452337293855050947704881893774987284937170465899569254...
|
|
MATHEMATICA
|
RealDigits[2 Sqrt[3] Pi/9, 10, 100][[1]]
|
|
PROG
|
(PARI) a = 2*Pi/(3*sqrt(3)) \\ Stanislav Sykora, Apr 16 2015
|
|
CROSSREFS
|
Cf. A000796, A002194, A248181, A257096, A257097, A186706.
Cf. A091682 (Sum_{i >= 0} (i!)^2/(2*i)!).
Sequence in context: A011125 A197583 A021831 * A021482 A199287 A198735
Adjacent sequences: A248894 A248895 A248896 * A248898 A248899 A248900
|
|
KEYWORD
|
nonn,cons
|
|
AUTHOR
|
Bruno Berselli, Mar 06 2015
|
|
STATUS
|
approved
|
|
|
|