login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A198735
Decimal expansion of the absolute minimum of f(x)+f(2x), where f(x)=sin(x)+cos(x).
10
2, 0, 9, 2, 9, 8, 6, 7, 8, 0, 2, 5, 1, 1, 0, 3, 4, 2, 5, 9, 2, 2, 6, 7, 8, 2, 0, 1, 3, 6, 9, 7, 6, 0, 4, 3, 2, 3, 7, 0, 2, 4, 5, 6, 1, 8, 8, 4, 1, 8, 6, 1, 5, 1, 3, 2, 4, 6, 3, 7, 7, 7, 7, 1, 1, 4, 9, 9, 2, 3, 4, 3, 2, 3, 2, 1, 6, 3, 6, 4, 5, 2, 0, 8, 2, 5, 7, 4, 5, 9, 9, 1, 4, 5, 2, 4, 9, 9, 5
OFFSET
1,1
COMMENTS
Let f(x)=sin(x)+cos(x) and g(x)=f(x)+f(2x)+...+f(nx), where n>=2. Then f(x) attains an absolute minimum at some x between 0 and 2*pi. Guide to related sequences (including graphs in Mathematica programs):
n....x.........minimum of f(x)
EXAMPLE
x=4.89312267296329905539673190581...
min=-2.09298678025110342592267820137...
MATHEMATICA
f[t_] := Sin[t] + Cos[t]
x = Minimize[f[t] + f[2 t], t]
N[x, 30]
(RealDigits[N[{#1[[1]], t /. #1[[2]]}, 110]] &)[x]
Plot[f[t] + f[2 t], {t, -3 Pi, 3 Pi}]
(* Second program: *)
Root[27 - 162x - 207x^2 + 8x^3 + 32x^4, 1] // RealDigits[#, 10, 99]& // First (* Jean-François Alcover, Feb 19 2013 *)
CROSSREFS
Cf. A198736.
Sequence in context: A248897 A021482 A199287 * A071120 A249417 A189963
KEYWORD
nonn,cons
AUTHOR
Clark Kimberling, Oct 29 2011
STATUS
approved