login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A202947
G.f.: [ Sum_{n>=0} (n+1) * 2^(n^2) * x^n ]^(1/2).
0
1, 2, 22, 980, 161638, 100318460, 240313495420, 2251316821283048, 83005840299778004614, 12089092134684999622076396, 6972054121242613685463168904468, 15950722005044706228925521886595357720, 144954811888851643278920459489891540357638876
OFFSET
0,2
COMMENTS
Equals the self-convolution square-root of A197927 (with offset).
FORMULA
a(n) = (n+1)*2^(n^2-1) - Sum_{k=1..n-1} a(n-k)*a(k)/2 for n>0 with a(0)=1.
EXAMPLE
G.f.: A(x) = 1 + 2*x + 22*x^2 + 980*x^3 + 161638*x^4 + 100318460*x^5 +...
where
A(x)^2 = 1 + 2*2*x + 3*2^4*x^2 + 4*2^9*x^3 + 5*2^16*x^4 + 6*2^25*x^5 +...
more explicitly,
A(x)^2 = 1 + 4*x + 48*x^2 + 2048*x^3 + 327680*x^4 + 201326592*x^5 +...+ A197927(n+1)*x^n +...
PROG
(PARI) {a(n)=polcoeff(sum(m=0, n, (m+1)*2^(m^2)*x^m+x*O(x^n))^(1/2), n)}
(PARI) {a(n)=if(n==0, 1, (n+1)*2^(n^2-1)-sum(k=1, n-1, a(n-k)*a(k)/2))}
CROSSREFS
Sequence in context: A279802 A015210 A152558 * A177410 A193486 A337577
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Dec 26 2011
STATUS
approved