Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #6 Mar 31 2012 10:26:21
%S 8,-192,161280,-638668800,6974263296000,-162193467211776000,
%T 6893871130369327104000,-483949753351926762700800000,
%U 52208499391605859160162304000000,-8200911084433448356878294712320000000
%N a(n) = -4*a(n-1)*A001505(n-2), with a(1)=8.
%C Sums of coefficients from (4n+1)th moments of binomial(m,k) * binomial(3*m,k); see Maple code below.
%H Eric W. Weisstein, <a href="http://mathworld.wolfram.com/BinomialSums.html">MathWorld: Binomial Sums</a>
%H <a href="/index/Di#divseq">Index to divisibility sequences</a>
%F a(n)=-(1/8)*GAMMA(2*n-3/2)*GAMMA(n-1/2)*(-1)^n*64^n/Pi
%e The evaluation of sum(binomial(n, k)*binomial(3*n, k)*k^9, k=0..n) involves the polynomial 2187*n^11+6561*n^10-45927*n^9-28431*n^8+322947*n^7-257985*n^6-473445*n^5+726003*n^4-110482*n^3-189924*n^2+52624*n-4320, the sum of the coefficients of which is -192 = a(2).
%p with(PolynomialTools); polyn:=q->expand(simplify((1/(GAMMA(n-((2*floor((q+1)/4)-1))/(2))))*(1/sqrt(3))*GAMMA(n+1/3)*GAMMA(n+2/3)*(1/3)*(1/(27^(-n)))*GAMMA(n)*1/64^n*sum(binomial(n, k)*binomial(3*n, k)*k^q, k=0..n)*(1/(GAMMA(2*n-((2*floor(q/2)-1)/(2)))))*(2^((floor((1/2)*q+1/2)-1)+q)))); coefl:=h->CoefficientList(expand(polyn(h)), n); coe:=(d, b)->coefl(d)[b];seq(sum(coe((4*d+1),b),b=1..(4*d+1)+floor(((4*d+1)+1)/4)+floor((4*d+1)/2)),d=1..6);seq(-(1/8)*GAMMA(2*n-3/2)*GAMMA(n-1/2)*(-1)^n*64^n/Pi,n=1..6);
%Y Cf. A203778, A015219, A202948, A202946.
%K easy,sign
%O 1,1
%A _John M. Campbell_, Jan 19 2012