login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A239094
a(n) = (5*n^9 - 30*n^7 + 63*n^5 - 50*n^3 + 12*n)/360.
3
0, 0, 1, 130, 2446, 21146, 117971, 494732, 1695036, 4992492, 13072917, 31153342, 68720938, 142120342, 278268263, 519829688, 932250488, 1613106744, 2704301673, 4407716634, 7005003334, 10882290034, 16560665275, 24733398404, 36310956980, 52474986980, 74742532605, 105041888406, 145801597410, 200054234926, 271556748751, 364929262576, 485814390512
OFFSET
0,4
LINKS
C. P. Neuman and D. I. Schonbach, Evaluation of sums of convolved powers using Bernoulli numbers, SIAM Rev. 19 (1977), no. 1, 90--99. MR0428678 (55 #1698). See Table 1.
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
G.f.: x^2*(x^6 + 120*x^5 + 1191*x^4 + 2416*x^3 + 1191*x^2 + 120*x + 1) / (x-1)^10. - Colin Barker, Mar 24 2014
MATHEMATICA
Table[(5 n^9 - 30 n^7 + 63 n^5 - 50 n^3 + 12 n)/360, {n, 0, 50}] (* Vincenzo Librandi, Mar 24 2014 *)
PROG
(Magma) [(5*n^9-30*n^7+63*n^5-50*n^3+12*n)/360: n in [0..40]]; // Vincenzo Librandi, Mar 24 2014
(PARI) concat([0, 0], Vec(x^2*(x^6 +120*x^5 +1191*x^4 +2416*x^3 +1191*x^2 +120*x +1) / (x -1)^10 + O(x^100))) \\ Colin Barker, Mar 24 2014
CROSSREFS
Sequence in context: A229329 A262108 A250212 * A084641 A271758 A228997
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Mar 23 2014
STATUS
approved