login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A072205
a(n) = (p^2 - p + 2)/2 for p = prime(n); number of squares modulo p^2.
4
2, 4, 11, 22, 56, 79, 137, 172, 254, 407, 466, 667, 821, 904, 1082, 1379, 1712, 1831, 2212, 2486, 2629, 3082, 3404, 3917, 4657, 5051, 5254, 5672, 5887, 6329, 8002, 8516, 9317, 9592, 11027, 11326, 12247, 13204, 13862, 14879, 15932, 16291, 18146, 18529
OFFSET
1,1
COMMENTS
Second terms of triple Peano sequence A071988. [Robert G. Wilson v, Jul 03 2002]
Positions of primes in A075383: A000040(n) = A075383(a(n)). [Reinhard Zumkeller, Jun 22 2009]
Number of different squares modulo p^2, for p ranging over the primes. Proof: the p multiples of p (0, p, 2p...) have the same square: 0 mod p^2. The other elements have the same square iff they are opposite: x^2 == y^2 (mod p^2) iff (x - y)(x + y) == 0 (mod p^2) iff x == y (mod p) or x == -y (mod p) or 2y == 0 (mod p). So the (p^2 - p) non-p-multiples account for (p^2 - p)/2 different squares and the p-multiples for 1 extra square, giving a total of (p^2 - p + 2)/2. [Bert Seghers, Dec 21 2011]
From Jianing Song, Apr 13 2019: (Start)
For k coprime to prime(n), k^a(n) == +-k (mod prime(n)^2).
For every integer k, k^(2a(n)) == k^2 (mod prime(n)^2). (End)
FORMULA
a(n) = A008837(n) + 1.
a(n) = A000124(A000040(n)) by definition [Bert Seghers, Jan 01 2012]
MATHEMATICA
seq[n_Integer?Positive] := Module[{fn01 = 1, fn10 = 1, fnout = 1}, Do[{fn10, fn01, fnout} = {fn10 + 1, fn01 + fn10, fn01 + fnout}, {n - 1}]; {fn10, fn01, fnout}]; Ar = Flatten[ Table[ seq[ Prime[n]], {n, 1, 50}]]; a = {}; Do[a = Append[a, Ar[[n]]], {n, 2, 150, 3}]; a
PROG
(Sage) [(p^2 - p + 2)/2 for p in prime_range(200)]
(PARI) a(n)=binomial(prime(n), 2)+1 \\ Charles R Greathouse IV, Jan 11 2012
CROSSREFS
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Jul 03 2002
EXTENSIONS
Name edited by Bert Seghers, Jan 01 2012
STATUS
approved