

A072207


a(0) = 1; for n>0, a(n) = number of distinct sums of subsets of {1, 1/2, 1/3, 1/4, ..., 1/n} (allowing the empty subset).


3



1, 2, 4, 8, 16, 32, 52, 104, 208, 416, 832, 1664, 1856, 3712, 7424, 9664, 19328, 38656, 59264, 118528, 126976, 224128, 448256, 896512, 936832, 1873664, 3747328, 7494656, 7771136, 15542272, 15886336, 31772672, 63545344
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Define L to be a set of rational numbers with L={0}, s=1 in generation 0 and the rule "replace each term t in L with terms t1/s, t+1/s, then increment s" to generate the next generation. a(n) is the size of the set in generation n. First generation = {1,1}, second generation = {3/2,1/2,1/2,3/2}, 3rd generation = {11/6,7/6,5/6,1/6,1/6,5/6,7/6,11/6}.  Dylan Hamilton, Oct 28 2010
If n is a prime power, a(n) = 2*a(n1). However, this is not "if and only if", e.g., a(10) = 2*a(9).  Robert Israel, Nov 23 2016


LINKS

Table of n, a(n) for n=1..33.


MAPLE

S[1]:= {0, 1}: A[1]:= 2:
for n from 2 to 30 do
S[n]:= S[n1] union (1/n +~ S[n1]);
A[n]:= nops(S[n]);
od:
seq(A[i], i=1..30); # Robert Israel, Nov 23 2016


MATHEMATICA

w = {0}; o = {1}; s = 1
Do[w = Union[Flatten[{w  (1/s), w + (1/s)}]]; AppendTo[o, Length[w]]; ++s, {NumberOfApplications}]; o # Dylan Hamilton, Oct 28 2010


CROSSREFS

Cf. A175952.
Sequence in context: A306314 A007055 A175951 * A176718 A033860 A231388
Adjacent sequences: A072204 A072205 A072206 * A072208 A072209 A072210


KEYWORD

nonn


AUTHOR

John W. Layman, Jul 03 2002


EXTENSIONS

More terms from Vladeta Jovovic, Jul 05 2002
Terms through a(32) from Sean A. Irvine, Nov 29 2010
Merged A175951 with this entry at the suggestion of Robert Israel.  N. J. A. Sloane, Nov 24 2016


STATUS

approved



