OFFSET
0,2
COMMENTS
Define L to be a set of rational numbers with L={0}, s=1 in generation 0 and the rule "replace each term t in L with terms t-1/s, t+1/s, then increment s" to generate the next generation. a(n) is the size of the set in generation n. First generation = {-1,1}, second generation = {-3/2,-1/2,1/2,3/2}, 3rd generation = {-11/6,-7/6,-5/6,-1/6,1/6,5/6,7/6,11/6}. - Dylan Hamilton, Oct 28 2010
If n is a prime power, a(n) = 2*a(n-1). However, this is not "if and only if", e.g., a(10) = 2*a(9). - Robert Israel, Nov 23 2016
LINKS
Bert Dobbelaere, Table of n, a(n) for n = 0..83
M. N. Bleicher and P. Erdős, The number of distinct subsums of sum 1..N 1/i, Math. Comp. 29 (1975), 29-42, Collection of articles dedicated to Derrick Henry Lehmer on the occasion of his seventieth birthday, see Front matter.
Bert Dobbelaere, Python program
FORMULA
a(p) = 2 * a(p-1) for p prime. a(2*p) = 2 * a(2*p-1) for p>3 prime. - Giovanni Resta, Jul 18 2019
MAPLE
S[1]:= {0, 1}: A[1]:= 2:
for n from 2 to 30 do
S[n]:= S[n-1] union (1/n +~ S[n-1]);
A[n]:= nops(S[n]);
od:
seq(A[i], i=1..30); # Robert Israel, Nov 23 2016
MATHEMATICA
w = {0}; o = {1}; s = 1
Do[w = Union[Flatten[{w - (1/s), w + (1/s)}]]; AppendTo[o, Length[w]]; ++s, {NumberOfApplications}]; o # Dylan Hamilton, Oct 28 2010
PROG
(PARI) M72207=List([[0]]); A072207(n)={for(k=#M72207, n, listput(M72207, setunion(Set([x+1/k|x<-M72207[k]]), M72207[k]))); #M72207[n+1]} \\ M. F. Hasler, Oct 29 2022
CROSSREFS
KEYWORD
nonn
AUTHOR
John W. Layman, Jul 03 2002
EXTENSIONS
More terms from Vladeta Jovovic, Jul 05 2002
Terms through a(32) from Sean A. Irvine, Nov 29 2010
Offset set to 0 and a(33)-a(38) from Giovanni Resta, Jul 20 2019
STATUS
approved