Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).
%I #30 May 25 2023 08:05:36
%S 0,1,2,4,6,11,10,22,22,31,28,56,36,79,58,72,86,137,80,172,112,145,148,
%T 254,146,261,208,274,230,407,182,466,342,375,360,448,322,667,456,528,
%U 444,821,384,904,592,635,676,1082,574,1051,692,924,836,1379,732,1154,912,1153
%N a(n) = Sum_{i=1..n} denominator(n^i/i).
%H Daniel Suteu, <a href="/A279911/b279911.txt">Table of n, a(n) for n = 0..10000</a>
%F From _Daniel Suteu_, Jul 28 2019: (Start)
%F a(prime(n)) = A072205(n).
%F a(p^k) = (p^(2*k+1) + p + 2) / (2*(p+1)), for prime powers p^k.
%F a(n) = Sum_{k=1..n} gcd(m, k), where m = A095996(n).
%F a(n) = Sum_{k=1..n} f(n,k), where f(n,k) is the largest divisor d of k for which gcd(d, n) = 1. (End)
%F a(n) = Sum_{1<=k<=n, gcd(n,k)=1} phi(k)*floor(n/k). - _Ridouane Oudra_, May 24 2023
%p A279911:=n->add(denom(n^i/i), i=1..n): seq(A279911(n), n=0..100);
%o (PARI) a(n) = sum(k=1, n, if(gcd(n,k) == 1, k, denominator(n^k/k))); \\ _Daniel Suteu_, Jul 28 2019
%o (PARI) a(n) = sum(k=1, n, if(gcd(n,k) == 1, k, vecmax(select(d->gcd(d, n) == 1, divisors(k))))); \\ _Daniel Suteu_, Jul 28 2019
%o (PARI) a(n) = my(f=factor(n)[,1]); sum(k=1, n, if(gcd(n, k) == 1, k, gcd(vector(#f, j, k / f[j]^valuation(k, f[j]))))); \\ _Daniel Suteu_, Jul 29 2019
%o (Magma) [0] cat [&+[Denominator(n^i/i):i in [1..n]]:n in [1..60]]; // _Marius A. Burtea_, Jul 29 2019
%Y Cf. A279912.
%K nonn,easy
%O 0,3
%A _Wesley Ivan Hurt_, Dec 22 2016