login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164306
Triangle read by rows: T(n, k) = k / gcd(k, n), 1 <= k <= n.
8
1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 3, 4, 1, 1, 1, 1, 2, 5, 1, 1, 2, 3, 4, 5, 6, 1, 1, 1, 3, 1, 5, 3, 7, 1, 1, 2, 1, 4, 5, 2, 7, 8, 1, 1, 1, 3, 2, 1, 3, 7, 4, 9, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 1, 1, 1, 1, 1, 5, 1, 7, 2, 3, 5, 11, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 1
OFFSET
1,5
COMMENTS
Also the gcd of the coefficients of the partition polynomials (called 'De Moivre polynomials' by O'Sullivan, see link, Theorem 4.1). - Peter Luschny, Sep 20 2022
LINKS
Cormac O'Sullivan, De Moivre and Bell polynomials, arXiv:2203.02868 [math.CO], 2022.
FORMULA
Sum of n-th row = A057661(n).
T(n, k) = A051537(n, k)/A054531(n, k). - Reinhard Zumkeller, Oct 30 2009
EXAMPLE
From Indranil Ghosh, Feb 14 2017: (Start)
Triangle begins:
1,
1, 1,
1, 2, 1,
1, 1, 3, 1,
1, 2, 3, 4, 1,
1, 1, 1, 2, 5, 1,
1, 2, 3, 4, 5, 6, 1,
. . .
T(4,3) = 3 / gcd(3,4) = 3 / 1 = 3. (End)
MAPLE
seq(seq(k / igcd(n, k), k = 1..n), n = 1..13); # Peter Luschny, Sep 20 2022
MATHEMATICA
Flatten[Table[k/GCD[k, n], {n, 20}, {k, n}]] (* Harvey P. Dale, Jul 21 2013 *)
PROG
(PARI) for(n=0, 10, for(k=1, n, print1(k/gcd(k, n), ", "))) \\ G. C. Greubel, Sep 13 2017
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Reinhard Zumkeller, Aug 12 2009
STATUS
approved