login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A164304 a(n) = 4*a(n-1) - 2*a(n-2) for n > 1; a(0) = 3, a(1) = 14. 3
3, 14, 50, 172, 588, 2008, 6856, 23408, 79920, 272864, 931616, 3180736, 10859712, 37077376, 126590080, 432205568, 1475642112, 5038157312, 17201345024, 58729065472, 200513571840, 684596156416, 2337357481984, 7980237615104 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

Binomial transform of A164303. Second binomial transform of A164654. Inverse binomial transform of A164305.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..185 from Vincenzo Librandi)

Index entries for linear recurrences with constant coefficients, signature (4,-2).

FORMULA

a(n) = 4*a(n-1) - 2*a(n-2) for n > 1; a(0) = 3, a(1) = 14.

a(n) = ((3+4*sqrt(2))*(2+sqrt(2))^n + (3-4*sqrt(2))*(2-sqrt(2))^n)/2.

G.f.: (3+2*x)/(1-4*x+2*x^2).

E.g.f.: (3*cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x))*exp(2*x). - G. C. Greubel, Sep 13 2017

MATHEMATICA

(3 + 2*x)/(1 - 4*x + 2*x^2) + O[x]^24 // CoefficientList[#, x]& (* Jean-Fran├žois Alcover, Jun 22 2017 *)

LinearRecurrence[{4, -2}, {3, 14}, 50] (* G. C. Greubel, Sep 13 2017 *)

PROG

(MAGMA) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((3+4*r)*(2+r)^n+(3-4*r)*(2-r)^n)/2: n in [0..24] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 20 2009

(PARI) x='x+O('x^50); Vec((3+2*x)/(1-4*x+2*x^2)) \\ G. C. Greubel, Sep 13 2017

CROSSREFS

Cf. A164303, A164654, A164305.

Sequence in context: A261043 A063025 A187917 * A098521 A084150 A203196

Adjacent sequences:  A164301 A164302 A164303 * A164305 A164306 A164307

KEYWORD

nonn,easy

AUTHOR

Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009

EXTENSIONS

Edited and extended beyond a(5) by Klaus Brockhaus, Aug 20 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified June 23 04:15 EDT 2021. Contains 345395 sequences. (Running on oeis4.)