login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A051537
Triangle read by rows: T(i,j) = lcm(i,j)/gcd(i,j) for 1 <= j <= i.
11
1, 2, 1, 3, 6, 1, 4, 2, 12, 1, 5, 10, 15, 20, 1, 6, 3, 2, 6, 30, 1, 7, 14, 21, 28, 35, 42, 1, 8, 4, 24, 2, 40, 12, 56, 1, 9, 18, 3, 36, 45, 6, 63, 72, 1, 10, 5, 30, 10, 2, 15, 70, 20, 90, 1, 11, 22, 33, 44, 55, 66, 77, 88, 99, 110, 1, 12, 6, 4, 3, 60, 2, 84, 6, 12, 30, 132, 1, 13, 26, 39
OFFSET
1,2
COMMENTS
From Robert G. Wilson v, May 10 2002: (Start)
The first term of the k-th row is k. The first leading diagonal contains all 1's. The second leading diagonal contains twice the triangular numbers = n*(n-1).
For p prime, the sum of the p-th row is (p^3 - p^2 + 2)/2.
Proof: The p-th row is p, 2*p, 3*p, ..., (p-2)*p, (p-1)*p, 1. The sum of the row = p*(1 + 2 + 3 + ... + (p-2) + (p-1)) + 1 = p*(p-1)*p/2 + 1 = (p^3 - p^2 + 2)/2. (End) [Edited by Petros Hadjicostas, May 27 2020]
In the square array where T(i,j) = T(j,i), the natural extension of the triangle, each set of rows and columns with common indices [d1, d2, ..., ds] define a group multiplication table on their grid, if the d1, d2, ..., ds are the set of divisors of a squarefree number [A. Jorza]. - R. J. Mathar, May 03 2007
T(n,k) is the minimum number of squares necessary to fill a rectangle with sides of length n and k. - Stefano Spezia, Oct 06 2018
LINKS
Andrei Jorza, Groups of Divisors: Solution to problem 10893, Amer. Math. Monthly, 2003, 441-443.
FORMULA
T(n,k) = A054531(n,k)*A164306(n,k). - Reinhard Zumkeller, Oct 30 2009
T(n,k) = A051173(n,k) / A050873(n,k). - Reinhard Zumkeller, Jul 07 2013
T(n,k) = n*k/gcd(n,k)^2. - Stefano Spezia, Oct 06 2018
EXAMPLE
Triangle T(n,k) (with rows n >= 1 and columns k = 1..n) begins
1;
2, 1;
3, 6, 1;
4, 2, 12, 1;
5, 10, 15, 20, 1;
6, 3, 2, 6, 30, 1;
7, 14, 21, 28, 35, 42, 1;
8, 4, 24, 2, 40, 12, 56, 1;
...
MAPLE
T:=proc(n, k) n*k/gcd(n, k)^2; end proc: seq(seq(T(n, k), k=1..n), n=1..13); # Muniru A Asiru, Oct 06 2018
MATHEMATICA
Flatten[ Table[ LCM[i, j] / GCD[i, j], {i, 1, 13}, {j, 1, i}]]
T[n_, k_]:=n*k/GCD[n, k]^2; Flatten[Table[T[n, k], {k, 1, 13}, {n, 1, k}]] (* Stefano Spezia, Oct 06 2018 *)
PROG
(Haskell)
a051537 n k = a051537_tabl !! (n-1) !! (k-1)
a051537_row n = a051537_tabl !! (n-1)
a051537_tabl = zipWith (zipWith div) a051173_tabl a050873_tabl
-- Reinhard Zumkeller, Jul 07 2013
(GAP) Flat(List([1..13], n->List([1..n], k->Lcm(n, k)/Gcd(n, k)))); # Muniru A Asiru, Oct 06 2018
(Magma) /* As triangle */ [[Lcm(n, k)/Gcd(n, k): k in [1..n]]: n in [1.. 15]]; // Vincenzo Librandi, Oct 07 2018
CROSSREFS
Diagonals give A002378, A070260, A070261, A070262.
Row sums give A056789.
Sequence in context: A217891 A322044 A010251 * A374895 A338797 A171999
KEYWORD
nonn,tabl
AUTHOR
EXTENSIONS
More terms from Robert G. Wilson v, May 10 2002
STATUS
approved