login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A070261
4th diagonal of triangle defined in A051537.
2
4, 10, 2, 28, 40, 6, 70, 88, 12, 130, 154, 20, 208, 238, 30, 304, 340, 42, 418, 460, 56, 550, 598, 72, 700, 754, 90, 868, 928, 110, 1054, 1120, 132, 1258, 1330, 156, 1480, 1558, 182, 1720, 1804, 210, 1978, 2068, 240, 2254, 2350, 272, 2548, 2650, 306, 2860
OFFSET
1,1
FORMULA
a(n) = lcm(n + 3, n) / gcd(n + 3, n).
From Colin Barker, Mar 27 2017: (Start)
G.f.: 2*x*(2 + 5*x + x^2 + 8*x^3 + 5*x^4 - x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)^3).
a(n) = 3*a(n-3) - 3*a(n-6) + a(n-9) for n>9.
(End)
From Amiram Eldar, Oct 08 2023: (Start)
Sum_{n>=1} 1/a(n) = 3/2.
Sum_{n>=1} (-1)^n/a(n) = 22*log(2)/9 - 7/6.
Sum_{k=1..n} a(k) ~ (19/81) * n^3. (End)
MATHEMATICA
Table[ LCM[i + 3, i] / GCD[i + 3, i], {i, 1, 60}]
PROG
(PARI) Vec(2*x*(2 + 5*x + x^2 + 8*x^3 + 5*x^4 - x^6 - x^7) / ((1 - x)^3*(1 + x + x^2)^3) + O(x^60)) \\ Colin Barker, Mar 27 2017
CROSSREFS
Cf. A051537.
Sequence in context: A337840 A349305 A244152 * A367029 A054048 A121512
KEYWORD
nonn,easy
AUTHOR
Amarnath Murthy, May 09 2002
EXTENSIONS
Edited by Robert G. Wilson v, May 10 2002
STATUS
approved