The OEIS mourns the passing of Jim Simons and is grateful to the Simons Foundation for its support of research in many branches of science, including the OEIS.
The OEIS is supported by the many generous donors to the OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A070260 Third diagonal of triangle defined in A051537. 3
 3, 2, 15, 6, 35, 12, 63, 20, 99, 30, 143, 42, 195, 56, 255, 72, 323, 90, 399, 110, 483, 132, 575, 156, 675, 182, 783, 210, 899, 240, 1023, 272, 1155, 306, 1295, 342, 1443, 380, 1599, 420, 1763, 462, 1935, 506, 2115, 552, 2303, 600, 2499, 650, 2703, 702 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 LINKS Colin Barker, Table of n, a(n) for n = 1..1000 Index entries for linear recurrences with constant coefficients, signature (0,3,0,-3,0,1). FORMULA From Vladeta Jovovic, May 09 2002: (Start) a(n) = n*(n+2)/4 if n is even else n*(n+2). a(n) = 3*a(n-2) - 3*a(n-4) + a(n-6). G.f.: x*(3 + 2*x + 6*x^2 - x^4)/(1 - x^2)^3. (End) E.g.f.: (x/4)*((12 + x)*cosh(x) + (3 + 4*x)*sinh(x)). - G. C. Greubel, Jul 20 2017 From Amiram Eldar, Oct 08 2023: (Start) Sum_{n>=1} 1/a(n) = 3/2. Sum_{n>=1} (-1)^n/a(n) = 1/2. Sum_{k=1..n} a(k) ~ (5/24) * n^3. (End) MATHEMATICA Table[ LCM[i + 2, i] / GCD[i + 2, i], {i, 1, 60}] LinearRecurrence[{0, 3, 0, -3, 0, 1}, {3, 2, 15, 6, 35, 12}, 60] (* Harvey P. Dale, Sep 14 2019 *) PROG (PARI) Vec(x*(3+2*x+6*x^2-x^4) / (1-x^2)^3 + O(x^60)) \\ Colin Barker, Mar 27 2017 CROSSREFS Bisections: A002378, A000466. Cf. A051537. Sequence in context: A086485 A068310 A033314 * A142705 A072346 A334865 Adjacent sequences: A070257 A070258 A070259 * A070261 A070262 A070263 KEYWORD nonn,easy AUTHOR Amarnath Murthy, May 09 2002 EXTENSIONS More terms from Vladeta Jovovic, May 09 2002 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified June 18 11:45 EDT 2024. Contains 373481 sequences. (Running on oeis4.)