login
A070263
Triangle T(n,k), n >= 0, 1 <= k <= 2^n, read by rows, giving minimal distance-sum of any set of k binary vectors of length n.
1
0, 0, 1, 0, 1, 4, 8, 0, 1, 4, 8, 16, 25, 36, 48, 0, 1, 4, 8, 16, 25, 36, 48, 68, 89, 112, 136, 164, 193, 224, 256, 0, 1, 4, 8, 16, 25, 36, 48, 68, 89, 112, 136, 164, 193, 224, 256, 304, 353, 404, 456, 512, 569, 628, 688, 756, 825, 896, 968, 1044, 1121, 1200, 1280
OFFSET
0,6
COMMENTS
For n >= 8 the rows have different beginnings.
LINKS
A. Kündgen, Minimum average distance subsets in the Hamming cube, Discrete Math., 249 (2002), 149-165.
FORMULA
Rows seem to converge to expansion of (1/(1-x)^2) * Sum_{k>=0} 2^k*t/(1-t^2), where t = x^2^k. - Ralf Stephan, Sep 12 2003
EXAMPLE
0; 0,1; 0,1,4,8; 0,1,4,8,16,25,36,48; 0,1,4,8,16,25,36,48,68,89,112,...
CROSSREFS
Cf. A022560.
Sequence in context: A182500 A260189 A208926 * A176912 A245295 A135691
KEYWORD
nonn,tabf
AUTHOR
Andre Kundgen (akundgen(AT)csusm.edu), May 09 2002
EXTENSIONS
More terms from Sean A. Irvine, Jun 06 2024
STATUS
approved