

A121512


a(n) = a(n1) + a(n3)  a(n4) for n>4, with a(1)=1, a(2)=4, a(3)=10, a(4)=4.


0



1, 4, 10, 4, 7, 13, 7, 10, 16, 10, 13, 19, 13, 16, 22, 16, 19, 25, 19, 22, 28, 22, 25, 31, 25, 28, 34, 28, 31, 37, 31, 34, 40, 34, 37, 43, 37, 40, 46, 40, 43, 49, 43, 46, 52, 46, 49, 55, 49, 52, 58, 52, 55, 61, 55, 58, 64, 58, 61, 67, 61, 64, 70, 64, 67, 73
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

This sequence gives a linearly increasing triangle shaped form on plotting.


LINKS



FORMULA

G.f.: x*(13*x6*x^2+7*x^3)/((1+x+x^2)*(x1)^2). [Oct 14 2009]
a(n) = n+3 + (1)^n * A130806(n+1). [Oct 14 2009]
a(n) = (24*n + 75  18*cos(2*(n+1)*Pi/3) + 9*cos(2*Pi*sin(2*n*Pi/3)/sqrt(3)) + 50*sqrt(3)*sin(2*(n+1)*Pi/3))/24.  Wesley Ivan Hurt, Oct 05 2017


MATHEMATICA

M = {{0, 1, 0}, {0, 0, 1}, {1, 0, 0}} v[1] = {1, 4, 10} v[n_] := v[n] = M.v[n  1] + {0, 0, 3} a = Table[v[n][[1]], {n, 1, 50}]


CROSSREFS



KEYWORD

nonn,easy


AUTHOR



EXTENSIONS

Definition replaced by recurrence  The Assoc. Editors of the OEIS, Oct 14 2009


STATUS

approved



