login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A121509
a(n) = 5*n^2/2 - 5*n + 13/4 - (-1)^n/4.
1
1, 3, 11, 23, 41, 63, 91, 123, 161, 203, 251, 303, 361, 423, 491, 563, 641, 723, 811, 903, 1001, 1103, 1211, 1323, 1441, 1563, 1691, 1823, 1961, 2103, 2251, 2403, 2561, 2723, 2891, 3063, 3241, 3423, 3611, 3803, 4001, 4203, 4411, 4623, 4841, 5063, 5291, 5523
OFFSET
1,2
FORMULA
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4).
a(n) = 1 + 2*(n-1)^2 + floor((n-1)^2/2). - Wesley Ivan Hurt, Jun 14 2013
G.f.: x*(1 + x + 5*x^2 + 3*x^3) / ((1 - x)^3*(1 + x)). - Colin Barker, Jun 08 2020
MATHEMATICA
LinearRecurrence[{2, 0, -2, 1}, {1, 3, 11, 23}, 50] (* Harvey P. Dale, Oct 17 2020 *)
PROG
(PARI) a(n) = 5*n^2/2 - 5*n + 13/4 - (-1)^n/4; \\ Jinyuan Wang, Jun 07 2020
(PARI) Vec(x*(1 + x + 5*x^2 + 3*x^3) / ((1 - x)^3*(1 + x)) + O(x^40)) \\ Colin Barker, Jun 08 2020
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Roger L. Bagula, Sep 07 2006
EXTENSIONS
Definition replaced by polynomial - The Assoc. Editors of the OEIS, Oct 14 2009
STATUS
approved