login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A164305
a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 3, a(1) = 17.
3
3, 17, 81, 367, 1635, 7241, 32001, 141319, 623907, 2754209, 12157905, 53667967, 236902467, 1045739033, 4616116929, 20376528343, 89946351555, 397042410929, 1752630004689, 7736483151631, 34150488876963, 150747551200361, 665431885063425, 2937358451978023
OFFSET
0,1
COMMENTS
Binomial transform of A164304. Third binomial transform of A164654. Inverse binomial transform of A164535.
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 (terms 0..169 from Vincenzo Librandi)
FORMULA
a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 3, a(1) = 17.
G.f.: (3-x)/(1-6*x+7*x^2).
a(n) = ((3+4*sqrt(2))*(3+sqrt(2))^n + (3-4*sqrt(2))*(3-sqrt(2))^n)/2.
E.g.f.: (3*cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x))*exp(3*x). - G. C. Greubel, Sep 13 2017
MATHEMATICA
LinearRecurrence[{6, -7}, {3, 17}, 30] (* Harvey P. Dale, Jun 03 2015 *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((3+4*r)*(3+r)^n+(3-4*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Aug 20 2009
(PARI) x='x+O('x^50); Vec((3-x)/(1-6*x+7*x^2)) \\ G. C. Greubel, Sep 13 2017
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Aug 20 2009
STATUS
approved