login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 3, a(1) = 17.
3

%I #15 Sep 08 2022 08:45:47

%S 3,17,81,367,1635,7241,32001,141319,623907,2754209,12157905,53667967,

%T 236902467,1045739033,4616116929,20376528343,89946351555,397042410929,

%U 1752630004689,7736483151631,34150488876963,150747551200361,665431885063425,2937358451978023

%N a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 3, a(1) = 17.

%C Binomial transform of A164304. Third binomial transform of A164654. Inverse binomial transform of A164535.

%H G. C. Greubel, <a href="/A164305/b164305.txt">Table of n, a(n) for n = 0..1000</a> (terms 0..169 from Vincenzo Librandi)

%H <a href="/index/Rec#order_02">Index entries for linear recurrences with constant coefficients</a>, signature (6,-7).

%F a(n) = 6*a(n-1) - 7*a(n-2) for n > 1; a(0) = 3, a(1) = 17.

%F G.f.: (3-x)/(1-6*x+7*x^2).

%F a(n) = ((3+4*sqrt(2))*(3+sqrt(2))^n + (3-4*sqrt(2))*(3-sqrt(2))^n)/2.

%F E.g.f.: (3*cosh(sqrt(2)*x) + 4*sqrt(2)*sinh(sqrt(2)*x))*exp(3*x). - _G. C. Greubel_, Sep 13 2017

%t LinearRecurrence[{6,-7},{3,17},30] (* _Harvey P. Dale_, Jun 03 2015 *)

%o (Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-2); S:=[ ((3+4*r)*(3+r)^n+(3-4*r)*(3-r)^n)/2: n in [0..21] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Aug 20 2009

%o (PARI) x='x+O('x^50); Vec((3-x)/(1-6*x+7*x^2)) \\ _G. C. Greubel_, Sep 13 2017

%Y Cf. A164304, A164654, A164535.

%K nonn,easy

%O 0,1

%A Al Hakanson (hawkuu(AT)gmail.com), Aug 12 2009

%E Edited and extended beyond a(5) by _Klaus Brockhaus_, Aug 20 2009